Tìm m để phương trình
x2 -(m+1) x -m+1 =0 có 2 nghiệm trái dấu
2. Tìm giá trị của m để phương trình sau có 2 nghiệm cùng dấu. Khi đó 2 nghiệm mang dấu gì ? a) x - 2mx + 5m - 4= 0 (1) b) ma + mr +3 0 (2) 3. Cho phương trình: (m + 1)x2 + 2(m + 4)x + m+1 = 0 Tìm m để phương trình có: a) Một nghiệm b) Hai nghiệm phân biệt cùng dấu c) Hai nghiệm âm phân biệt 4. Cho phương trình (m - 4)x2 – 2(m- 2)x + m-1 = 0 Tìm m để phương trình a) Có hai nghiệm trái dấu và nghiệm âm có GTTÐ lớn hơn b) Có 2 nghiệm trái dấu và bằng nhau về GTTÐ c) Có 2 nghiệm trái dấu d) Có nghiệm kép dương. e) Có một nghiệm bằng 0 và một nghiệm dương.
cho phương trình: x^2-2(m-1)x-3-m=0
a. chứng tỏ rằng phương trình có nghiệm x1,x2 với mọim
b. tìm m để phương trình có hai nghiệm trái dấu
c. tìm m để phương trình có hai nghiệm cùng dấu
d. tìm m sao cho nghiệm số x1,x2 của phương trình thỏa mãn x1^2+x2^2=10
Cho phương trình : (m+1)\(x^2\) - 2(m-1)x + m+3 = 0
a)Tìm m để phương trình có 2 nghiệm trái dấu
b) Tìm hệ thức giữa 2 nghiệm x1; x2 không phụ thuộc vào m
a. Phương trình có 2 nghiệm trái dấu khi:
\(ac< 0\Leftrightarrow\left(m+1\right)\left(m+3\right)< 0\)
\(\Leftrightarrow-3< m< -1\)
b. Giả sử pt đã cho có 2 nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m-2}{m+1}\\x_1x_2=\dfrac{m+3}{m+1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m-2}{m+1}\\2x_1x_2=\dfrac{2m+6}{m+1}\end{matrix}\right.\) \(\Rightarrow x_1+x_2+2x_1x_2=\dfrac{4m+4}{m+1}=4\)
Vậy \(x_1+x_2+2x_1x_2=4\) là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
1:cho phương trình : x2 -2mx+m2-m-3=0
a, tìm m để phương trình có 2 nghiệm trái dấu
b, tìm m để phương trình có 2 nghiệm phân biệt dương
câu 2: cho pt: x2+(2m-1)x-m=0
a, chứng tỏ rằng pt luôn có 2 nghiệm với mọi m
b, Tìm m để pt có 2 nghiệm x1,x2 TM x1-x2=1
1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)
Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)
a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)
Vậy \(m>\frac{1+\sqrt{13}}{2}\)
2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)
Ta thấy \(\Delta=4m^2+1>0\forall m\)
Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m
b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)
Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)
\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)
\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)
Vậy \(m=0\)thoă mãn yêu cầu bài toán
Thứ hai cho phương trình x² - 2 (m - 1) x -3-m=0(ẩn x)(1) a) Chứng minh rằng phương trình có nghiệm x1,x² với mọi m b) Tìm m để phương trình có hai nghiệm trái dấu c) Tìm m để phương trình có hai nghiệm cùng âm d) Tìm m sao cho x1 x2 của phương trình thỏa mãn x1^2 + x2^2 lớn hơn hoặc bằng 0 e) tìm hệ thức liên hệ giữa x1 và x2 không phụ thuộc m f) hãy biểu thị x1 qua x2
a:Δ=(2m-2)^2-4(-m-3)
=4m^2-8m+4+4m+12
=4m^2-4m+16
=(2m-1)^2+15>=15>0
=>Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì -m-3<0
=>m+3>0
=>m>-3
c: Để phương trình có hai nghiệm âm thì:
2m-2<0 và -m-3>0
=>m<1 và m<-3
=>m<-3
d: x1^2+x2^2=(x1+x2)^2-2x1x2
=(2m-2)^2-2(-m-3)
=4m^2-8m+4+2m+6
=4m^2-6m+10
=4(m^2-3/2m+5/2)
=4(m^2-2*m*3/4+9/16+31/16)
=4(m-3/4)^2+31/4>0 với mọi m
Tìm các giá trị của m để phương trình x 2 – 2(m – 1)x – m + 2 = 0 có hai nghiệm trái dấu.
A. m < 2
B. m > 2
C. m = 2
D. m > 0
Phương trình x 2 – 2(m – 1)x – m + 2 = 0 (a = 1; b = −2(m – 1); c = −m + 2)
Nên phương trình có hai nghiệm trái dấu khi ac < 0 ⇔ 1.(−m + 2) < 0
⇔ m > 2
Vậy m > 2 là giá trị cần tìm
Đáp án: B
X^2-2 (m-1)x-3-m=0
a) tìm m để phương trình có 2 nghiệm trái dấu
b) tìm m để phương trình có 2 nghiệm cùng âm
c) tìm m để phương trình co 2 nghiệm thỏa mãn x1^2+x2^2 lớn hơn hoặc bằng 10
Cho hàm số F(x) = (m + 1)x2 - 2mx + m - 2 (m là tham số). a) Tìm m để phương trình f(x) = 0 có hai nghiệm trái dấu? b) Tìm m để bất phương trình f(x) < 0 có một nghiệm đúng với mọi x.
Với thì PT có nghiệm (chọn)
Với thì là đa thức bậc 2 ẩn
có nghiệm khi mà
Tóm lại để có nghiệm thì
Cho phương trình x2-2(m+1)x+m2+2m=0 (1) , (với m là tham số ). Tìm các giá trị của m để phương trình (1) có hai nghiệm trái dấu
Để phương trình (1) có hai nghiệm trái dấu thì \(1\left(m^2+2m\right)< 0\)
\(\Leftrightarrow m^2+2m< 0\)
\(\Leftrightarrow m^2+2m+1< 1\)
\(\Leftrightarrow\left(m+1\right)^2< 1\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+1>-1\\m+1< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m< 0\end{matrix}\right.\Leftrightarrow-2< m< 0\)
Ta có: \(\Delta'=1>0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-ét: \(x_1x_2=m^2+2m\)
Để phương trình có 2 nghiệm trái dấu
\(\Leftrightarrow m^2+2m< 0\) \(\Leftrightarrow-2< m< 0\)
Vậy để phương trình có 2 nghiệm trái dấu thì \(-2< m< 0\)
Cho phương trình : x2+(m-1)x-m2-2=0 (m là tham số).Tìm giá trị của m để phương trình có hai nghiệm trái dấu thỏa mãn 2|x1|-|x2|=4(biết x1<x1)