Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngoan Mèo
Xem chi tiết
Ngoan Mèo
Xem chi tiết
KM Trran
Xem chi tiết
ABCD
1 tháng 11 2020 lúc 20:02

4p+3 nhỏ hơn 25 -> 4p nhỏ hơn 22 -> p< 5

Lại có p là số nguyên tố nên p=2, p=3 và p=5

Khách vãng lai đã xóa
Nhược Hy
Xem chi tiết
NGUYỄN THẾ HIỆP
21 tháng 2 2017 lúc 19:41

Xét p=2, 4p+17=4.2+17=25 thỏa mãn

Xét p>2 => p=2k+1

=> 4p+17=4(2k+1)+17=8k+21

Mà 4p+17 là số chính phương lẻ nên chia 4 dư 1

mà với p> 2 thì 4p+17 chia 8 dư 5

=> không có giá trị p>2 thỏa mãn

Vậy p=2

Nhược Hy
21 tháng 2 2017 lúc 20:03

Mình cám ơn bạn nhiều lắm

Hoang My
Xem chi tiết
Kiều Vũ Linh
12 tháng 9 2023 lúc 7:35

Do 2p - 1 lẻ và 4p - 1 lẻ nên p chẵn

Vậy p = 2

Dùng phương pháp đánh giá em nhá.

Nếu p = 2 ⇒ 2p - 1 = 4 - 1 = 3 (thỏa mãn)

        p = 2 ⇒ 4p - 1 = 8 - 1 = 7 (thỏa mãn)

Nếu p = 3 ⇒ 2p - 1 = 6- 1 = 5 (thỏa mãn)

       p  = 3 ⇒ 4p - 1 = 12 - 1 = 11 (thỏa mãn)

Nếu p > 3 ⇒ p = 3k + 1 (k \(\) \(\in\) N*)

       p = 3k + 1 ⇒ 4p - 1 = 4.(3k + 1) - 1 = 12k - 3 ⋮ 3(loại)

Nếu p = 3k + 2 ⇒ 2p - 1 = 2.(3k + 2) - 1 = 6k - 3 ⋮ 3(loại)

Từ những phân tích trên ta có p = 2; 3

Kết luận: p \(\in\) {2; 3}

    

        

  

Hoang My
Xem chi tiết

 Dùng phương pháp đánh giá em nhá.

+ Nếu p = 2 ta có: 2p + 1 = 5 (thỏa mãn);   4p + 1 = 9 (loại)

+ Nếu p = 3 ta có: 2p + 1 = 7 (thỏa mãn);   4p + 1 = 13 (thỏa mãn)

+ Nếu p > 3 mà p là số nguyên tố nên p có dạng:

   p = 3k + 1; p = 3k + 2 (k \(\in\)N*)

Với p = 3k + 1 ⇒ 2p + 1 = 2.(3k+1) + 1 = 6k+3 ⋮ 3 (loại)

Với p = 3k + 2 ⇒ 4p + 1 = 4.(3k + 2) + 1 = 12k + 9 ⋮ 3(loại)

Từ những phân tích trên ta có: p = 3 

Kết luận với p = 3 thì p; 2p + 1; 4p + 1 đồng thời là số nguyên tố.

 

HT.Phong (9A5)
12 tháng 9 2023 lúc 14:51

Gọi d là ƯCLN(2p + 1; 4p + 1) 

⇒ 2p + 1 ⋮ d và 4p + 1 ⋮ d 

⇒ 2 x (2p + 1) ⋮ d và 4p + 1 ⋮ d

⇒ 4p + 2 ⋮ d và 4p + 1 ⋮ d

⇒ (4p + 2) - (4p + 1) ⋮ d

⇒ 4p + 2 - 4p - 1 ⋮ d

⇒ 2 - 1 ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy 2p + 1 và 4p + 1 là 2 số nguyên tố cùng nhau 

Lê Song Phương
12 tháng 9 2023 lúc 15:00

Cùng là số nguyên tố nó khác với nguyên tố cùng nhau bạn ơi.

Xét \(p=2\). Khi đó \(4.2+1=9\) không là SNT.

Xét \(p=3\). Khi đó \(2.3+1=7\) và \(4.3+1=13\) là các SNT.

Xét \(p>3\). Khi đó \(p=3k+1\) hoặc \(p=3k+2\).

 Nếu \(p=3k+1\) thì \(2p+1=2\left(3k+1\right)+1=6k+3⋮3\)  nên \(2p+1\) không phải là SNT.

 Nếu \(p=3k+2\) thì \(4p+1=4\left(3k+2\right)+1=12k+9⋮3\) nên \(4p+1\) không phải là SNT.

Vậy nếu p là SNT lớn hơn 3 thì 1 trong 2 số \(2p+1,4p+1\) không là SNT. Do đó SNT p duy nhất thỏa mãn đề bài là \(p=3\)

Trần Phương Linh
Xem chi tiết
Lê Song Phương
23 tháng 11 2023 lúc 20:35

Xét \(p=2\) thì \(2p+1=5;4p+1=9\) không thỏa mãn.

Xét \(p=3\) thì \(2p+1=7;4p+1=13\), thỏa mãn.

Xét \(p>3\) thì \(p=3q+1;p=3q+2\left(q\inℕ^∗\right)\)

Nếu \(p=3q+1\) thì \(2p+1=2\left(3q+1\right)+1=6q+3⋮3\) . Hơn nữa \(6q+3>3\) nên \(2p+1\) là hợp số, không thỏa mãn.

Nếu \(p=3q+2\) thì \(4p+1=4\left(3q+2\right)+1=12q+9⋮3\) . Lại có \(12q+9>3\) nên \(4p+1\) là hợp số, không thỏa mãn.

Vậy \(p=3\) là số nguyên tố duy nhất thỏa mãn ycbt.

Anh Tran
23 tháng 11 2023 lúc 20:30

là p =1

Anh Tran
23 tháng 11 2023 lúc 20:32

1

Nguyễn Phương Nga
Xem chi tiết
Sana .
13 tháng 3 2021 lúc 21:54

b, 

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

Khách vãng lai đã xóa
Trần Khánh Vũ
10 tháng 12 2021 lúc 23:05
10000×2000?
Khách vãng lai đã xóa
Tạ Duy Hưng
12 tháng 11 2023 lúc 19:52

hvnh

Cao Thành Nguyên
Xem chi tiết
Akai Haruma
11 tháng 10 2023 lúc 0:00

Lời giải:
Nếu $p\vdots 3$ thì $p=3$. Khi đó $2p+1=7, 4p+1=13$ đều là số nguyên tố (thỏa mãn) 

Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k\in\mathbb{N}^*$

$\Rightarrow 2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$. Mà $2p+1>3$ với mọi $p$ nên $2p+1$ không là snt (trái với giả thiết) - loại.

Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}^*$

$\Rightarrow 4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. mà $4p+1>3$ với mọi $p$ nên không là snt(trái với giả thiết) - loại.

Vậy $p=3$ là đáp án duy nhất.