Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Thuận
Xem chi tiết
cường xo
23 tháng 1 2020 lúc 21:33

a=b  vì a tách ra thành tích có thừa số là 100010001

 b tách ra thành tích có thừa số là 100010001

Khách vãng lai đã xóa
Cô bé lọ lem
Xem chi tiết
Hoàng Phúc
10 tháng 7 2016 lúc 20:02

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+.....+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-....-\frac{1}{25}\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{50}\)

Vậy \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

VICTORY_Trần Thạch Thảo
10 tháng 7 2016 lúc 20:13

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)

\(\Rightarrow A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)\(\left(dpcm\right)\)

Bài này lớp 6 mik kiểm tra chất lượng đầu năm nè

Đặng Tuấn Vũ
Xem chi tiết
vinh
2 tháng 8 2019 lúc 15:35

ta có A =2020 x 20192019

=> A = 2020 x 2019 x10001

=> A = (2020 x 10001) x 2019

=> A = 20202020 x2019 = B

vậy A = B
 

Lương Thu Hà
Xem chi tiết
Nguyễn Ngô Minh Trí
23 tháng 10 2017 lúc 20:15

Ta có :

\(\frac{1}{\sqrt{k+\sqrt{k+1}}}\) =\(\frac{\sqrt{k+1}-\sqrt{k}}{k+1-k}\)\(\sqrt{k+1-\sqrt{k}}\)

Từ đó ta được:

\(y=\sqrt{2-\sqrt{1+\sqrt{3-\sqrt{2+\sqrt{4-\sqrt{3+...+\sqrt{100-\sqrt{99=\sqrt{100-\sqrt{1=9}}}}}}}}}}\)

=> 

<br class="Apple-interchange-newline"><div id="inner-editor"></div>11+2 +12+3 +...+199+100 =9

 
Shiba Inu
23 tháng 10 2017 lúc 20:03

Cậu vào google tham khảo nhé !

Phan Nghĩa
23 tháng 10 2017 lúc 20:11

Làm nè.

Giải:

\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}=9\)

\(=\sqrt{2}-1+\sqrt{2}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)

\(=\sqrt{10}-1\)

\(=9\)

\(\RightarrowĐPCM\)

P/s: Ko chắc đâu. Bn xem thêm tại Câu hỏi của Mai Thanh Xuân - Toán lớp 9 - Học toán với OnlineMath

Lăng Thiên Tuyết
Xem chi tiết
Minh Triều
18 tháng 12 2015 lúc 17:27

Nhân Q cho 3 ói lấy 3Q-Q sẽ ra 2Q=? =>Q òi so sánh

Vũ Nam Khánh
Xem chi tiết
Nguyễn Hưng Phát
18 tháng 3 2018 lúc 15:45

Đặt \(S=\frac{1}{3}+\frac{2}{3^2}+.......+\frac{101}{3^{101}}\)

\(\Rightarrow3S=1+\frac{2}{3}+.......+\frac{101}{3^{100}}\)

\(\Rightarrow3S-S=\left(1+\frac{2}{3}+..+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+..+\frac{101}{3^{101}}\right)\)

\(\Rightarrow2S=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{100}}-\frac{101}{3^{101}}< 1+\frac{1}{3}+....+\frac{1}{3^{100}}\)

\(\Rightarrow6S< 3+1+........+\frac{1}{3^{99}}\)

\(\Rightarrow6S-2S< \left(3+1+....+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+....+\frac{1}{3^{100}}\right)\)

\(\Rightarrow4S< 3-\frac{1}{3^{100}}< 3\Rightarrow S< \frac{3}{4}\)

ST
18 tháng 3 2018 lúc 15:50

Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+...+\frac{101}{3^{101}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)

\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\right)\)

\(4A=3-\frac{101}{3^{100}}-\frac{1}{3^{100}}+\frac{101}{3^{101}}\)

\(4A=3-\frac{303}{3^{101}}-\frac{3}{3^{101}}+\frac{100}{3^{101}}\)

\(4A=3-\frac{206}{3^{101}}< 3\)

=>\(4A< 3\)

\(\Rightarrow A< \frac{3}{4}\)

Cậu Bé Ngu Ngơ
Xem chi tiết
VICTORY_ Quỳnh
Xem chi tiết
Đinh Tuấn Việt
10 tháng 7 2016 lúc 19:26

Cái vế \(\frac{1}{26}+\frac{1}{27}+...\) là sao vậy ???

VICTORY_ Quỳnh
10 tháng 7 2016 lúc 19:37

ak xin lỗi mk ghi lộn đề gianroi khocroi, đề đúng là:

Chứng minh rằng: \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

Các bạn giúp mk với mk cần gấp thank you!!! vui yeu

Trịnh Thị Như Quỳnh
10 tháng 7 2016 lúc 19:48

Đặt \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

Dễ thấy \(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\) Do đó:

            \(A=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

               \(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

               \(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

vui yeu ^...^ ^_^ hihihi

 

Vũ Phương Thảo
Xem chi tiết