Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen tuan
Xem chi tiết
nguyên công quyên
Xem chi tiết
WOJO
Xem chi tiết
Phan Nghĩa
6 tháng 5 2020 lúc 19:46

Nhân 2 vế với x ta có : 

\(\left(2m-1\right)x+5=x+1\)

\(< =>\left(2m-1\right)x^2+5x=x^2+x\)

\(< =>\left(2m-1\right)x^2-x^2+5x-x=0\)

\(< =>x^2\left(2m-2\right)+x\left(5-1\right)=0\)

\(< =>x\left[x\left(2m-2\right)+1\left(5-1\right)\right]=0\)

\(< =>x\left[2xm-2x+4\right]=0\)

\(< =>x\left[2\left(mx-x+2\right)\right]=0\)

\(< =>\orbr{\begin{cases}x=0\\2\left(mx-x+2\right)=0\end{cases}< =>\orbr{\begin{cases}x=0\\mx-x+2=0\end{cases}< =>x=0< =>m\in}}ℤ\)

Khách vãng lai đã xóa
lý gia huy
Xem chi tiết
NY nơi đâu ( ɻɛɑm ʙáo cá...
1 tháng 3 2020 lúc 19:46

a)

Phương trình bậc nhất một ẩn có dạng ax+b=0

trong đó: a khác 0

áp dụng vào pt(1)

để (1) là phương trình bậc nhất một ẩn khi

m-1 khác 0

<==>m khác 1

b) thay x=-5 vào (1) ta có

(m-1).(-5)+m=0

-m+5+m=0

5=0 (vô lý)

do đó không có giá trị của m thỏa mãn

c) để pt(1) vô nghiệm

khi m-1 =0

<=>m=1

vậy với m=1 thì pt vô nghiệm

Mk cũng không chắc là mk trả lời đúng đâu ~_~

có gì sai mong bạn bỏ qua ^_^

Khách vãng lai đã xóa
Tiến Lộc Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2023 lúc 20:18

Để phương trình có hai nghiệm phân biệt thì

m<>1/2 và (-2m)^2-4(2m-1)>0

=>m<>1/2 và 4m^2-8m+4>0

=>m<>1/2

Ngọc Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 21:03

Ta có: \(\text{Δ}=\left(1-4m\right)^2-4\left(3-2m\right)\left(1-2m\right)\)

\(=16m^2-8m+4-4\left(2m-3\right)\left(2m-1\right)\)

\(=16m^2-8m+4-4\left(4m^2-2m-6m+3\right)\)

\(=16m^2-8m+4-4\left(4m^2-8m+3\right)\)

\(=16m^2-8m+4-16m^2+32m-12\)

\(=24m-8\)

Để phương trình có hai nghiệm phân biệt thì

\(\left\{{}\begin{matrix}3-2m\ne0\\24m-8>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m\ne3\\24m>8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{3}{2}\\m>\dfrac{1}{3}\end{matrix}\right.\)

Ngọc Mai
Xem chi tiết
Trên con đường thành côn...
18 tháng 7 2021 lúc 20:01

undefined

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 20:02

\(\Delta=\left(2m-1\right)^2-4\cdot\left(m+1\right)\cdot m\)

\(=4m^2-4m+4-4m^2-4m\)

\(=-8m+4\)

Để phương trình có hai nghiệm phân biệt thì 

\(\left\{{}\begin{matrix}m+1\ne0\\-8m+4>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\-8m>-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m< \dfrac{1}{2}\)

PNQ-10A4
Xem chi tiết
aloalo
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2023 lúc 9:15

a: Theo đề, ta có hệ:

2a+b=2 và a+b=5

=>a=-3 và b=8

shunnokeshi
Xem chi tiết
Nguyễn Linh Chi
20 tháng 4 2020 lúc 10:37

ĐK: \(\hept{\begin{cases}x\ne2\\x\ne-m-1\end{cases}}\)

\(\frac{x+2}{x-2}+\frac{m-x}{x+m+1}=0\)(1) 

=> ( x + 2 ) ( x + m + 1 ) + ( m - x ) ( x - 2 ) = 0 

<=> (m + 3 ) x + 2 ( m + 1 ) + ( m + 2 ) x - 2m = 0 

< => ( 2m + 5 ) x + 2 = 0  (2)

TH1: 2m + 5 = 0 <=> m = -5/2 

Khi đó (2) trở thành:  0x + 2 = 0 => phương trình vô nghiệm với mọi x 

=> m = -5/2 thỏa mãn

TH2: 2m + 5 \(\ne\)0 <=> m \(\ne\)-5/2 

khi đó: (2) có nghiệm: \(x=-\frac{2}{2m+5}\)

( 1) vô nghiệm <=> (2) có nghiệm x = 2 hoặc x = -m -1

<=> \(\orbr{\begin{cases}-\frac{2}{2m+5}=-m-1\\-\frac{2}{2m+5}=2\end{cases}}\)

Giải: \(-\frac{2}{2m+5}=-m-1\) 

<=> 2 = ( m + 1 ) ( 2m + 5 ) 

<=> 2m^2 +7m +3= 0 

<=> m = -1/2 hoặc m = -3  (tm m khác -5/2)

Giải: \(-\frac{2}{2m+5}=2\)

<=> 2m + 5 = - 1 <=> m = - 3 (tm)

Vậy m = -5/2; m = -3; m = -1/2 thì phương trình vô nghiệm.

Khách vãng lai đã xóa