Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ly Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 23:53

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 23:54

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

Lê Ngọc Diệp
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Nguyễn Thị Kim Ngân
Xem chi tiết
Trần Khánh Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2023 lúc 0:06

2(m-1)x+3=2m-5

=>x(2m-2)=2m-5-3=2m-8

a: (1) là phương trình bậc nhất một ẩn thì m-1<>0

=>m<>1

b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0

=>m=1

c: Để (1) có nghiệm duy nhất thì m-1<>0

=>m<>1

d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0

=>Ko có m thỏa mãn

e: 2x+5=3(x+2)-1

=>3x+6-1=2x+5

=>x=0

Khi x=0 thì (1) sẽ là 2m-8=0

=>m=4

Phương Uyên
Xem chi tiết
Nguyễn Ngọc Huy Toàn
22 tháng 3 2022 lúc 13:10

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

Đặng Hoàng Phúc
Xem chi tiết
Ngô Ngọc Anh
26 tháng 5 2019 lúc 8:47

a)  Ta có:

\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\)

Mà \(\left(m-4\right)^2\ge0\Leftrightarrow\Delta\ge0\)với mọi m

Vậy phương trình luôn có nghiệm với mọi m

Ngô Ngọc Anh
26 tháng 5 2019 lúc 9:02

b) Áp dụng hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=-m\\x_1.x_2=2m-4\end{cases}}\)

Ta có: \(A=\frac{x_1.x_2}{x_1+x_2}=\frac{2m-4}{-m}=\frac{2m}{-m}-\frac{4}{-m}=-2+\frac{4}{m}\)

Để A đạt giá trị nguyên thì 4/m đạt giá trị nguyên <=> m là ước của 4

Mà m nguyên dương nên m = 1; 2; 4

Vậy m = 1; 2; 4

Phạm Tuấn Đạt
26 tháng 5 2019 lúc 9:15

a,\(\Delta=m^2-4.\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\ge0\)

=> pt luôn có nghiệm

b,theo hệ thức viét ta có:

\(x_1x_2=2m-4;x_1+x_2=-m\)

\(\Rightarrow A=\frac{2m-4}{-m}=-2+\frac{4}{m}\)

\(\Rightarrow m\inƯ\left(4\right)\)

le bao son
Xem chi tiết
nguyễn thị huyền anh
23 tháng 6 2018 lúc 20:57

b1           \(\frac{x+a}{x+1}+\frac{x-2}{x}=2\)

ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)

\(\Leftrightarrow x\left(x+a\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)

\(\Leftrightarrow x^2+ax+x^2-x-2=2x^2+2x\)

\(\Leftrightarrow ax-3x=2\)

\(\Leftrightarrow\left(a-3\right)x=2\)

để pt vô nghiệm  thì a-3=0 <=>a=3 thì pt vô nghiệm

2,\(4x-k+4=kx+k\)

\(\Leftrightarrow4x-kx=2k-4\)

\(\Leftrightarrow\left(4-k\right)x=2k-4\)

để pt có nghiệm duy nhất thì 4-k khác 0 <=> k khác 4 thì pt có nghiệm duy nhất là\(\frac{2k-4}{4-k}\)

pt vô nghiệm thì 4-k=0 <=.>k=4 

Bảo Trân
Xem chi tiết
Nguyễn Ngọc Huy Toàn
17 tháng 3 2022 lúc 16:56

a.\(\Delta=\left(-4\right)^2-4.\left(1-2m\right)\)

      \(=16-4+8m=12+8m\)

Để pt có 2 nghiệm thì \(12+8m>0\)

                                       \(\Leftrightarrow m>-\dfrac{12}{8}\)

b. Theo hệ thức vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=1-2m\end{matrix}\right.\)

\(x_1^2+x^2_2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow4^2-2\left(1-2m\right)=6\)

\(\Leftrightarrow16-2+4m-6=0\)

\(\Leftrightarrow4m=-8\)

\(\Leftrightarrow m=-2\)

Vô danh
17 tháng 3 2022 lúc 16:56

a, \(\Delta'=\left(-2\right)^2-\left(1-2m\right)=4-1+2m=2m-3\)

Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-3\ge0\Leftrightarrow m\ge\dfrac{3}{2}\)

b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=1-2m\end{matrix}\right.\)

\(x_1^2+x_2^2=6\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\\ \Leftrightarrow4^2-2\left(1-2m\right)=6\\ \Leftrightarrow16-2+4m-6=0\\ \Leftrightarrow4m-8=0\\ \Leftrightarrow m=2\left(tm\right)\)