Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 4 2017 lúc 12:17

pansak9
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2023 lúc 15:17

a: Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc BFE+góc BCE=180 độ

=>góc AFE=góc ACB

mà góc FAE chung

nên ΔAFE đồng dạng với ΔACB

b: Xét tứ giác BFHD có

góc BFH+goc BDH=180 độ

=>BFHD là tứ giác nội tiếp

Xét tứ giác CEHD có

góc CEH+góc CDH=180 độ

=>CEHD là tứ giác nội tiếp

góc FDH=góc FBH

góc EDH=góc ACF

mà góc FBH=góc ACF

nên góc FDH=góc EDH

=>DH là phân giác của góc FDE(1)

góc EFH=góc CAD

góc DFH=góc EBC

mà góc CAD=góc EBC

nên góc EFH=góc DFH

=>FH là phân giác của góc EFD(2)

Từ (1), (2) suy ra H là giao của ba đường phân giác của ΔDEF

c: Xét ΔBHD vuông tại D và ΔBCE vuông tại E có

góc HBD chung

=>ΔBHD đồg dạng với ΔBCE

=>BH/BC=BD/BE

=>BH*BE=BC*BD

Xét ΔCDH vuông tại Dvà ΔCFB vuông tại F có

góc FCB chung

=>ΔCDH đồng dạng với ΔCFB

=>CD/CF=CH/CB

=>CD*CB=CH*CF
=>BH*BE+CH*CF=BC^2

Lê Hương Giang
Xem chi tiết
Tố Quyên
Xem chi tiết

a: Xét ΔHFA vuông tại F và ΔHDC vuông tại D có

\(\widehat{FHA}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔHFA~ΔHDC

=>\(\dfrac{HF}{HD}=\dfrac{HA}{HC}\)

=>\(HF\cdot HC=HD\cdot HA\left(1\right)\)

Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔHFB~ΔHEC
=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)

=>\(HF\cdot HC=HB\cdot HE\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HD=HF\cdot HC=HB\cdot HE\)

c: Xét tứ giác AFHE có \(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

nên AFHE là tứ giác nội tiếp

Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)

nên BFHD là tứ giác nội tiếp

Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)

nên CEHD là tứ giác nội tiếp

Ta có: \(\widehat{EFH}=\widehat{EAH}\)(AEHF là tứ giác nội tiếp)

\(\widehat{DFH}=\widehat{DBH}\)(BFHD là tứ giác nội tiếp)

mà \(\widehat{EAH}=\widehat{DBH}\left(=90^0-\widehat{ECB}\right)\)

nên \(\widehat{EFH}=\widehat{DFH}\)

=>FH là phân giác của góc EFD

Ta có: \(\widehat{FEH}=\widehat{FAH}\)(AEHF là tứ giác nội tiếp)

\(\widehat{DEH}=\widehat{DCH}\)(ECDH là tứ giác nội tiếp)

mà \(\widehat{FAH}=\widehat{DCH}\left(=90^0-\widehat{ABD}\right)\)

nên \(\widehat{FEH}=\widehat{DEH}\)

=>EH là phân giác của góc FED

Xét ΔFED có

EH,FH là các đường phân giác

Do đó: H là giao điểm của ba đường phân giác trong ΔFED

Đinh Thị Lan Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2022 lúc 23:20

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

b: Ta có: ΔAEB\(\sim\)ΔAFC

nên AE/AF=AB/AC
hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có 

AE/AB=AF/AC

\(\widehat{EAF}\) chung

DO đó: ΔAEF\(\sim\)ΔABC

Hoàn Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 11 2023 lúc 21:22

Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

\(\widehat{DBH}\) chung

Do đó: ΔBDH đồng dạng với ΔBEC
=>\(\dfrac{BD}{BE}=\dfrac{BH}{BC}\)

=>\(BH\cdot BE=BD\cdot BC\)

Xét ΔCDH vuông tại D và ΔCFB vuông tại F có

\(\widehat{DCH}\) chung

Do đó: ΔCDH đồng dạng với ΔCFB

=>\(\dfrac{CD}{CF}=\dfrac{CH}{CB}\)

=>\(CH\cdot CF=CD\cdot CB\)

ΔEBC vuông tại E

mà EI là đường trung tuyến

nên \(BC=2\cdot EI\)

=>\(BC^2=4\cdot EI^2\)

\(BH\cdot BE+CH\cdot CF\)

\(=BD\cdot BC+CD\cdot BC\)

\(=BC^2=4\cdot IE^2\)

Lê Đăng Hải Phong
Xem chi tiết
Kaito Kid
3 tháng 4 2022 lúc 17:22

c/m phần nào

quanh
Xem chi tiết
Hồ Ngọc Trà My
Xem chi tiết
Nguyễn Quang Minh nguyen
Xem chi tiết
Thủy Tô
1 tháng 5 2023 lúc 21:21

< Bạn tự vẽ hình nha>

a)Xét ΔABE và  ΔACF, ta có:

góc A: chung

góc F=góc E= 90o

Vậy  ΔABE ∼  ΔACF (g.g)

b)Xét  ΔHEC và  ΔHFB là:

góc H: chung

H1=H2(đối đỉnh)

Vậy  ΔHEC∼ ΔHFB (g.g)

\(\dfrac{HE}{HF}\)=\(\dfrac{HC}{HB}\)⇔HE.HB=HF.HC

<Mình chỉ biết đến đó thôi>bucminh

 

 

Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 14:49

c: góc AFH+góc AEH=180 độ

=>AFHE nội tiếp

góc HDC+góc HEC=180 độ

=>HECD nội tiếp

góc HFB+góc HDB=180 độ

=>HFBD nội tiếp

góc FEH=góc BAD

góc DEH=góc FCB

góc BAD=góc FCB

=>góc FEH=góc DEH

=>EH là phân giác của góc FED(1)

góc EFH=góc DAC

góc DFC=góc EBC

góc DAC=góc EBC

=>góc EFH=góc DFH

=>FH là phân giác của góc DFE(2)

Từ (1), (2) suy ra H là tâm đường tròn nội tiếp ΔDEF

e: Xét ΔBFH vuông tại F và ΔBEA vuông tại E có

góc EBA chung

=>ΔBFH đồng dạng với ΔBEA

=>BH*BE=BF*BA

Xet ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

=>ΔAFH đồng dạng với ΔADB

=>AH*AD=AF*AB

=>BH*BE+AH*AD=AB^2