Bài 2: Cho tam giác ABC vuông tại A, AB = 12cm, AC = 16cm; đường phân giác góc A cắt BC tại D.
a) Tính BC, BD, CD.
b) Vẽ đường cao AH, tính AH, HD và AD.
Bài 1: Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết BD = 15cm; DC = 20cm. Tính AB, AC, AH,AD.
Bài 2: Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết AB=12cm; AC = 16cm. Tính HD,HB.HC.
Bài 3: Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết AB=24cm; AC = 32cm. Tính HD,HB,HC.
1:
BC=15+20=35cm
AD là phân gíac
=>AB/BD=AC/CD
=>AB/3=AC/4=k
=>AB=3k; AC=4k
AB^2+AC^2=BC^2
=>25k^2=35^2
=>k=7
=>AB=21cm; AC=28cm
AH=21*28/35=16,8cm
\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)
2:
BC=căn 12^2+16^2=20cm
HB=AB^2/BC=12^2/20=7,2cm
HC=20-7,2=12,8cm
có ai biết giải bài này k hộ mình với mình xin cảm ơn.
-bài 2: cho tam giác ABC có, AB=12cm; AC=16cm; BC=20cm
a, chứng minh tam giác ABC vuông
b tính độ cao AH
c, kẻ HD và HE lần lượt vuông góc AB , AC. Tính HD và HE.
-Bài 3: cho tam giác ABC vuông tại A , đường cao AH, biết AH:AC=3:5 và AB=15cm
a, tính HB và HC
b, gọi E, F lần lượt là hình chiếu của H trên AB và AC ; chứng minh AB.AC=EF.BC
-bài 4: cho tam giác ABC vuông tại A đường phân giác trong BD( DϵAC) cho AB=3cm; BC=5cm.
a, tính AC, AD,CD
b, tính BD
có ai biết giải bài này k giải hộ mình vs ( mình cảm ơn )
bài 1: cho tam giác ABC vuông tại A kẻ đường cao AH. biết AB=15cm; HC=16cm. tính BC,AC,AH.
câu 2: cho tam giác ABC vuông tại A kẻ đường cao AH. biết AH=12cm; BC=25cm. tính AB,AC
bài 3: cho tam giác ABC vuông tại A kẻ đường cao AH. biết AB=6cm; BH=3cm. tính AH,AC,CH.
bài 4: cho tam giác ABC vuông tại A kẻ đường cao AH. tính diện tích tam giác ABC biết AH=12cm; BH=9cm.
bài 5: cho tam giác vuông , biết sỉ số của các cạnh góc vuông là\(\dfrac{5}{12}\) cạnh huyền là 26. tính độ dài các cạnh góc vuông và hình chiếu các cạnh góc vuông trên cạnh huyền.
bài 6: cho tam giác ABC vuông tại A. biết \(\dfrac{AB}{AC}\) =\(\dfrac{5}{7}\). đường cao AH=15cm. tính HB,HC
có ai biết giải bài này k giải hộ mình vs ( mình cảm ơn )
bài 1: cho tam giác ABC vuông tại A kẻ đường cao AH. biết AB=15cm; HC=16cm. tính BC,AC,AH.
câu 2: cho tam giác ABC vuông tại A kẻ đường cao AH. biết AH=12cm; BC=25cm. tính AB,AC
bài 3: cho tam giác ABC vuông tại A kẻ đường cao AH. biết AB=6cm; BH=3cm. tính AH,AC,CH.
bài 4: cho tam giác ABC vuông tại A kẻ đường cao AH. tính diện tích tam giác ABC biết AH=12cm; BH=9cm.
bài 5: cho tam giác vuông , biết sỉ số của các cạnh góc vuông là512512 cạnh huyền là 26. tính độ dài các cạnh góc vuông và hình chiếu các cạnh góc vuông trên cạnh huyền.
bài 6: cho tam giác ABC vuông tại A. biết ABACABAC =5757. đường cao AH=15cm. tính HB,HC
nhờ các bạn giải giúp hộ mình vs ạ mình cần gấp
Bài 2: Cho tam giác ABC vuông tại A có AB=12cm AC=16cm ve đường cao AH A) CM tam giác ABC đồng dạng tam giác HBA B) tính Bc, AH, BH C) Trên AH lấy điểm K sao cho AK=3,6cm. Từ K đường thẳng // BC cắt Ab và AC lần lượt tại M và N. Tính diện tích tứ giác BMNC
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC∼ΔHBA(g-g)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=12^2+16^2=400\)
hay BC=20(cm)
Vậy: BC=20cm
cho tam giác ABC vuông tại A có AB=16cm,AC=12cm. Kẻ AH vuông góc với BC tại H . Gọi S tam ABC là diện tích tam giác ABC 1) tính diện tích tam giác abc 2) tính BC,AH 3)tính BH,CH giúp mình vs ạ
1) Có \(\Delta ABC\) vuông
=> S\(\Delta ABC\) = \(\dfrac{AB.AC}{2}\) = \(\dfrac{16.12}{2}\) = 96 (cm2)
2) Có \(\Delta ABC\) vuông , theo định lý Pytago ta có :
AB2 + AC2 = BC2
=> 162 + 122 = BC2
=> 400 = BC2
=> BC = 20 (cm)
Ta có : S\(\Delta ABC\) = S\(\Delta ABH\) + S\(\Delta ACH\)
=> \(\dfrac{BH.AH}{2}+\dfrac{HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{BH.AH+HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{AH.\left(BH+HC\right)}{2}=S\Delta ABC\)
=> \(\dfrac{AH.BC}{2}\) = 96
=> AH = 96 . \(\dfrac{2}{BC}\) = 96 . \(\dfrac{2}{20}\) = 9.6 (cm)
3) Có \(\Delta ABH\) vuông , theo định lý Pytago ta có :
BH2 = AB2 - AH2
=>BH2 = 162 - 9.62 = 163.84
=> BH = 12.8 (cm)
=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)
cho tam giác có 2 góc B và C nhọn ,AB=16cm, AC=12cm .Từ trung điểm D của AC vẽ DI vuông góc BC tại I viết CI =3,6cm
CM tam giác ABC vuông tại A
ΔCID vuông tại I
=>\(CI^2+ID^2=CD^2\)
=>\(DI=\sqrt{6^2-3.6^2}=4.8\left(cm\right)\)
Kẻ AH vuông góc BC
=>AH//DI
Xét ΔCAH có DI//AH
nên \(\dfrac{DI}{AH}=\dfrac{CD}{CA}=\dfrac{1}{2}\)
=>\(AH=9.6\left(cm\right)\)
ΔAHB vuông tại H
=>\(AB^2=AH^2+HB^2\)
=>\(HB=\sqrt{16^2-9.6^2}=12.8\left(cm\right)\)
ΔAHC vuông tại H
=>\(AH^2+HC^2=AC^2\)
=>\(HC=\sqrt{12^2-9.6^2}=7.2\left(cm\right)\)
BC=BH+CH
=12,8+7,2
=20(cm)
Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
cho tam giác ABC vuông tại A có AB=12cm,Ac=16cm kẻ đường cao AH(h thuộc BC) tính diện tích tam giác ABC
Do tam gaics ABC vuông tại A nên:
\(S_{ABC}=\dfrac{1}{2}AB.AC=96\left(cm^2\right)\)
Bài 2. Cho tam giác ABC vuông tại A, AB = 12cm, AC = 16cm. Tia phân giác góc A cắt BC tại D.
a) Tính độ dài các đoạn thẳng BD, CD.
b) Từ D kẻ DE vuông góc với AC (E thuộc AC). Tính DE, AD.
Bài 3. Cho hình bình hành ABCD có CD = 4cm. Kẻ AH vuông góc với DC (H thuộc DC). Biết AH = 3cm.
a) Tính diện tích hình bình hành ABCD.
b) Gọi M là trung điểm AB, DM cắt AC tại N. Chứng minh: DN = 2NM.
c) Tính diện tích tam giác AMN.
Bài 2:
a:
BC=20cm
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/12=CD/16
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
Do đó: BD=60/7(cm); CD=80/7(cm)
b: Xét ΔABC có DE//AB
nên DE/AB=CD/BC
=>DE/12=4/7
hay DE=48/7(cm)
Cho tam giác ABC vuông tại A có AB=12cm , AC=16cm tia phân giác góc A cắt BC tại D . Tính tỉ số diện tích 2 tam giác ABD và ACD