Biết M,N,P lần lượt là hình chiếu của A(2;1;2),B(−1;1;3),C(−3;0;1) lên các trục Ox,Oy,Oz . Khi đó, phương trình mặt phẳng (MNP)là
cho hình bình hành ABCD. gọi M,N lần lượt là hình chiếu của A và C lên BD và P,Q lần lượt là hình chiếu của B và D lên AC. c/m MPNQ là hình bình hành
Gọi O là giao điểm của AC và BD
=>O là trung điểm chung của AC và BD
Xét ΔDQO vuông tại Q và ΔBPO vuông tại P có
OD=OB
\(\widehat{DOQ}=\widehat{BOP}\)
Do đó: ΔDQO=ΔBPO
Suy ra: DQ=BP
Xét ΔAOM vuông tại M và ΔCON vuông tại N có
OA=OC
\(\widehat{AOM}=\widehat{CON}\)
Do đó: ΔAOM=ΔCON
Suy ra: AM=CN
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Suy ra: Hai đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường
hay O là trung điểm của MN
Xét tứ giác BPDQ có
BP//DQ
BP=DQ
Do đó: BPDQ là hình bình hành
hay O là trung điểm của PQ
Xét tứ giác MPNQ có
O là trung điểm của MN
O là trung điểm của PQ
Do đó: MPNQ là hình bình hành
Cho hình bình hành ABCD. Gọi M, N lần lượt là hình chiếu của A, C lên BD và P, Q lần lượt là hình chiếu của B, D lên AC. Chứng minh rằng MPNQ là hình bình hành
cho hình bình hành ABCD. gọi M,N lần lượt là hình chiếu của A và C lên BD và P,Q lần lượt là hình chiếu của B và D lên AC. c/m MPNQ là hình bình hành
giúp với huhu,nhanh 3 tick
Lời giải:
Gọi giao điểm của AC,BDAC,BD là OO . Vì OO là giao điểm của 2 đường chéo hình bình hành nên OO là trung điểm mỗi đường.
Xét tam giác AMOAMO và CNOCNO có:
{AMOˆ=CNOˆ=900AOMˆ=CONˆ(đối đỉnh)⇒△AMO∼△CNO(g.g){AMO^=CNO^=900AOM^=CON^(đối đỉnh)⇒△AMO∼△CNO(g.g)
⇒MONO=AOCO=1⇒MO=NO⇒MONO=AOCO=1⇒MO=NO
Hay OO là trung điểm MNMN
Tương tự: △BOP∼△DOQ(g.g)⇒OPOQ=BODO=1△BOP∼△DOQ(g.g)⇒OPOQ=BODO=1
⇒OP=OQ⇒OP=OQ hay OO là trung điểm PQPQ
Xét tức giác MQNPMQNP có 2 đường chéo MN,PQMN,PQ cắt nhau tại trung điểm OO của mỗi đường nên MQNPMQNP là hình bình hành.
Cho hình chóp tứ giác đều S.ABCD, AB=a,SA=b. Gọi M,N,P,Q lần lượt là các điểm thuộc các cạnh bên SA,SB,SC,SD. M', N',, P', Q' lần lượt là hình chiếu vuông góc của M, N, P, Q trên (ABCD) Biết MNPQM'N'P'Q' là hình hộp chữ nhật có MN=2MM'.Tính diện tích của MNPQM'N'P'Q'
Cho (O), đk AB, bk OC. M thuộc cung AC, N thuộc cung BC. E, G lần lượt là hình chiếu của M, N trên AB. F, H lần lượt là hình chiếu của M, N trên OC. C/m EF=GH.
cho hình bình hành ABCD .Gọi M,N lần lượt là hình chiếu của A,C trên BD và P,Q là hình chiếu của B và D trên AC.c/m MNPQ là hình bình hành
Cho △ABC lấy d1 và d2 là đường phân giác ngoài tại đỉnh B và C. Lấy M, Q lần lượt là hình chiếu của A, C trên d1. Lấy N, P lần lượt là hình chiếu của A, B trên d2.
a/ C/m MN//BC
b/ C/m Tứ giác MNPQ là tứ giác nội tiếp
c/ Gọi BD, CE là phân giác của △ ABC. C/m BD.MQ=CE.NP.
Giúp mik với mn
Bài 2. Cho tam giác ABC vuông tại A có đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC a) Chứng minh tứ giác AMHN là hình chữ nhật. b) Tính MN biết AH = 4cm.
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
Bài 2. Cho tam giác nhọn ABC, trực tâm H nội tiếp (O) (BC < 2R). Gọi D, E, F lần lượt là trung điểm BC, CA, AB và P, M, N lần lượt là hình chiếu vuông góc của A, B, C lên BC, DF, DE. Gọi Q là hình chiếu vuông góc của H lên AD. Chứng minh PMQN là tứ giác điều hòa.
Trên cạnh BC, CD của hình vuông ABCD lấy 2 điểm E; F bất kì. Gọi M; N lần lượt là hình chiếu của D trên AE; AF. Gọi P; Q lần lượt là hình chiếu của B trên AE; AF. CMR: MN = PQ; MN vuông góc với PQ
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.