Cho 2 đường thẳng (d1): \(y=2x-2\) và (d2): \(-\dfrac{1}{2}x-2\)
a. Vẽ (d1) và (d2) trên cùng hệ trục tọa độ.
b. Gọi A, B, C lần lượt là giao điểm của (d1) và (d2), (d1) với trục hoành, (d2) với trục hoành.
i) C/M tam giác ABC là tam giác vuông
ii) Tính chu vi và diện tích của tam giác ABC.
(Dạ bày em cách làm cả bái với ạ tại em không vẽ ra tam giác vuông ABC)
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Phân giác trong của góc A cắt cạnh ABC tại D, cắt đường tròn tại E. Gọi M, N lần lượt là hình chiếu của D trên AB,AC.
a. Chứng minh tứ giác ADMN nội tiếp.
b. Cho góc MAN bằng a. Chứng minh MN = AD. sin a.
c. so sánh diện tích tứ giác AME! Và diện tích tam giác ABC.
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Cho tam giác ABC nội tiếp (O) có đường kính AB ( AC< BC). Trên dây BC lấy điểm \(H\ne B\)và \(H\ne C\). AH cắt (O) tại D. Kẻ HQ vuông góc AB (\(Q\in AB\)) Đường thẳng CQ cắt (O) tại F.
a, CMR tứ giác ACHQ là tứ giác nội tiếp.
b, Gọi M,N lần lượt là hình chiếu của F trên AC và BC. CMR MN, AB ,DF đồng quy.
Cho tam giác ABC nội tiếp (O) đường kính AB (AC < BC). Trên dây CB lấy điểm H (với H khác C và B). AH cắt đường tròn tại điểm thứ hai là D. Kẻ HQ vuông góc với AB (với Q thuộc AB)
a, Chứng minh tứ giác BDHQ nội tiếp
b, Biết CQ cắt (O) tại điểm thứ hai F, chứng minh DF // HQ
c, Chứng minh H cách đều các đường thẳng CD, CQ và DQ
d, Gọi M, N lần lượt là hình chiếu của F trên AC và CB. Chứng minh MN, AB, DF đồng quy
Cho tứ giác ABCD nội tiếp (O;R) sao cho tia BA và CD cắt nhau tại I, tia DA và CB cắt nhau tại K (I,K) nằm ngoài (O) .Phân giác của góc BIC cắt AD,BC lần lượt tại Q,N. Phân giác của góc AKB cắt AB, CD lần lượt tại M,P
a) Chứng minh tứ giác MNPQ là hình thoi
b) Gọi giao điểm 2 đường chéo của MNPQ là G. Chứng minh tam giác IGC đồng dạng tam giác IDG và IK2 = ID.IC + KB.KC
c) Gọi F là trung điểm AB, J là hình chiếu của F trên OB. L là trung điểm của FJ chứng minh AL vuông góc OL
Cho tam giác nhọn ABC có ba đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu vuông góc của D trên AB, AC, BE, CF.
a) Chứng minh EF // MN
b) Chứng minh MP + NQ = EF
c) Đường thẳng PQ cắt DE, DF lần lượt tại K, I và AD cắt EF, MN lần lượt tại G, O. Giả sử O là trung điểm MN. Khi đó tứ giác GIDK là hình gì?
Bài 1: Cho tam giác ABC nhọn ( AB<AC) nội tiếp đường tròn (O). Gọi H là hình chiếu vuông góc của A trên BC. Gọi M và N lần lượt là hình chiếu vuông góc của B và C trên đường kính AD của đường tròn(O)
a) CM tứ giác ABHM,AHNC nội tiếp
b) CM tam giác HMN đồng dạng tam giác ABC
c) Chứng minh HM vuông góc với AC
d) Gọi I là tủng điểm của BC. CM I là tâm đường tròn ngoại tiếp tam giác HMN
Bài 2:Cho đường tròn (O) đường kính AB=2R, Cl à trung điểm của OA và dây MN vuông góc với OA tại C. K là điểm di động trên cung nhỏ MB và H là giao của AK và MN
a) CM tứ giác BCHK nội tiếp
b) Chứng minh tam giác MBN đều
c) Tìm vị trí điểm K trên cung nhỏ MB sao cho KM+KN+KB đạt giá trị lớn nhất và tính giá trị lớn nhất đó theo R
Cho tam giác ABC, H là trực tâm. Lấy điểm M, N thuộc tia BC sao cho MN = BC và M nằm giữa B, C. Gọi D, E lần lượt là hình chiếu của M, N trên AC, AB. Chứng minh các điểm A, D, E, H cùng thuộc một đường tròn.