cho tam giác ABC có M là trung điểm của BC .chứng minh rằng :
a) AM >1/2 BC thì góc BAC <90
b) AM <1/2BC thì góc BAC >90
c) AM=1/2BC thì góc BAC =90
Cho tam giác ABC có canh AB=AC. Gọi M là trung điểm của BC.
a) Chứng minh rằng: góc ABC= góc ACB
b) Chứng minh rằng: AM là tia phân giác của góc BAC
c) Chứng minh rằng AM vuông góc với BC
Bài 1 :Cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC. Chứng minh rằng: a) tam giác AMB= tam giác AMC b) AM là tia phân giác của BAC c) AM vuông góc với BC d) Vẽ At là tia phân giác của góc ngoài ở đỉnh A của tam giác ABC . Chứng minh : At // BC
cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC. Chứng minh rằng: a) tam giác AMB= tam giác AMC b) AM là tia phân giác của BAC c) AM vuông góc với BC d) Vẽ At là tia phân giác của góc ngoài ở đỉnh A của tam giác ABC . Chứng minh : At // BC
cho tam giác ABC có AB=AC gọi M là trung điểm của BC
a Chứng minh tam giác AMB=tam giác AMC
b.Chứng minh rằng AM là tia phân giác của góc BAC
c Chứng minh AM vuông góc với BC
a) tam giác AMB và AMC có :
AM là cạnh chung
AB=AC(giả thiết)
MB=MC( M trung điểm của BC)
=>tam giác AMB=AMC(c-c-c)
b) tam giác AMB =AMC(cm trên)
=> góc BAM = CAM (hai góc tương ứng)
mà AM nằm giữa AB và AC
=> AM là tia phân giác của góc BAC
c)tam giác AMB = AMC (cm trên)
=> góc AMB = AMC( 2 góc tương ứng)
mà góc AMB+AMC=180o
=> góc AMB=AMC=180/2=90o
=> AM vuông góc với BC
nhớ vẽ hình
tick nha
cho tam giác ABC có AB=AC . M là trung điểm của BC . Chứng minh rằng : a AM là tia phân giác của BAC b. AM vuông góc với BC
Cho tam giác ABC có AB=AC.Điểm M là trung điểm của BC
a,Chứng minh tam giác ABM bằng tam giác ACM
b,Chứng minh AM vuông góc với BC
c,Chứng minh AM là tia phân giác của góc bAc
Bt1
Cho tam giác ABC có AB=AC, M là trung điểm của BC. Chứng minh rằng:
a) góc ABC= gócACB
b) chứng minh AM là tia phân giác của góc BAC
c) chứng minh AM vuông góc BC
Cho tam giác ABC và M là trung điểm của đoạn thẳng BC.
a) Giả sử AM vuông góc với BC. Chứng minh rằng tam giác ABC cân tại A.
b) Giả sử AM là tia phân giác của góc BAC. Chứng minh rằng tam giác ABC cân tại A.
a)
Xét 2 tam giác vuông AMC và AMB có:
AM chung
BM=CM (gt)
=>\(\Delta AMC = \Delta AMB\) (hai cạnh góc vuông)
=> AC=AB (2 cạnh tương ứng)
=> Tam giác ABC cân tại A
b)
Kẻ MH vuông góc với AB (H thuộc AB)
MG vuông góc với AC (G thuộc AC)
Xét 2 tam giác vuông AHM và AGM có:
AM chung
\(\widehat {HAM} = \widehat {GAM}\) (do AM là tia phân giác của góc BAC)
=>\(\Delta AHM = \Delta AGM\) (cạnh huyền – góc nhọn)
=> HM=GM (2 cạnh tương ứng)
Xét 2 tam giác vuông BHM và CGM có:
BM=CM (giả thiết)
MH=MG(chứng minh trên)
=>\(\Delta BHM = \Delta CGM\)(cạnh huyền – cạnh góc vuông)
=>\(\widehat {HBM} = \widehat {GCM}\)(2 góc tương ứng)
=>Tam giác ABC cân tại A.
Vẽ tam giác ABC có AB=AC= 6cm; BC= 8cm. Gọi M là trung điểm của BC
a) Chứng minh rằng: tam giác ABM= tam giác ACM
b) Chứng minh rằng: AM là tia phân giác của góc BAC