Cho hình bình hành ABCD có A = 82 độ tính góc B, góc C, góc D
câu 10 cho hình bình hành ABCD (AB//GÓC D=130\(^0\)
CD và góc B - góc C =50\(^0\)hãy tính các góc còn lại của hình thang
câu 11 cho hình bình hành ABCD có góc A =3 lần góc B.Hãy tính số đo góc của hình bình hành
Câu 10:
góc A=180-130=50 độ
góc B=(180+50)/2=230/2=115 độ
góc C=180-115=65 độ
Bài 1: Cho hình bình hành ABCD có E là trung điểm AD, F là trung điểm BC. Chứng minh :EA=ED=FB=FC
Bài 2: Tính các góc của hình bình hành
a) Góc A= 60 độ b) Góc A + Góc C= 140 độc) Góc B - Góc A= 40 độBài 1:
ABCD là hình bình hành
=>AD=BC(1)
E là trung điểm của AD
=>\(EA=ED=\dfrac{AD}{2}\left(2\right)\)
F là trung điểm của BC
=>\(FB=FC=\dfrac{BC}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra EA=ED=FB=FC
Bài 2:
a: ABCD là hình bình hành
=>\(\widehat{A}+\widehat{B}=180^0\)
=>\(\widehat{B}=180^0-60^0=120^0\)
ABCD là hình bình hành
=>\(\widehat{A}=\widehat{C};\widehat{B}=\widehat{D}\)
\(\widehat{A}=\widehat{C}\)
mà \(\widehat{A}=60^0\)
nên \(\widehat{C}=60^0\)
\(\widehat{B}=\widehat{D}\)
mà \(\widehat{B}=120^0\)
nên \(\widehat{D}=120^0\)
b: ABCD là hình bình hành
=>\(\widehat{A}=\widehat{C}\)
mà \(\widehat{A}+\widehat{C}=140^0\)
nên \(\widehat{A}=\widehat{C}=\dfrac{140^0}{2}=70^0\)
ABCD là hình bình hành
=>\(\widehat{A}+\widehat{B}=180^0\)
=>\(\widehat{B}=180^0-70^0=110^0\)
ABCD là hình bình hành
=>\(\widehat{B}=\widehat{D}\)
mà \(\widehat{B}=110^0\)
nên \(\widehat{D}=110^0\)
c: ABCD là hình bình hành
=>\(\widehat{B}+\widehat{A}=180^0\)
mà \(\widehat{B}-\widehat{A}=40^0\)
nên \(\widehat{B}=\dfrac{180^0+40^0}{2}=110^0;\widehat{A}=\dfrac{180^0-40^0}{2}=70^0\)
ABCD là hình bình hành
=>\(\widehat{A}=\widehat{C};\widehat{B}=\widehat{D}\)
=>\(\widehat{C}=70^0;\widehat{D}=110^0\)
Cho hình bình hành ABCD có góc A = 1000; góc A - góc B = 200 .Khi đó độ lớn của các góc B,C,D lần lượt là :
giúp với
\(\widehat{B}=100^0-20^0=80^0\)
Vì ABCD là hbh nên \(\left\{{}\begin{matrix}\widehat{A}=\widehat{C}=100^0\\\widehat{B}=\widehat{D}=80^0\end{matrix}\right.\)
chứng minh hình bình hành ABCD có AC=BD thì góc A=Góc B=Góc C=Góc D=90 độ
Xét hình bình hành ABCD có AC=BD
nên ABCD là hình chữ nhật
=>\(\widehat{BAD}=\widehat{ABC}=\widehat{BCD}=\widehat{CDA}=90^0\)
Câu 39. Nếu hình bình hành ABCD có góc A = 530 thì
A.Góc D= 530 B. Góc B= Góc C = 530.
C. Góc C= 1270 D. Góc D= 1270
Câu 40. Hai cạnh kề của hình bình hành tỉ lệ với 1 và 2 và chu vi của hình bình hành bằng 30cm. Khi đó độ dài hai cạnh kề của hình bình hành là
A. 12cm và 18cm B. 5cm và 10cm
C. 15cm và 30cm D. 9cm và 18cm
Cho hình bình hành ABCD,có góc BAD=120 độ.
a. Tính các góc còn lại của hình bình hành ABCD
b. Vẽ điểm E,F lần lượt là hình chiếu của điểm A,C trên CD,AB.Chứng minh ED=FB
a) Ta thấy : BAD = BCD = 120°( tính chất)
Mà AB//CD ( ABCD là hình bình hành)
=> ABC + BCD = 180°
=> ABC = ADC = 60°
Cho tứ giác ABCD có góc A = góc C và góc B = góc D
Chứng minh tứ giác ABCD là hình bình hành
cho hình bình hành ABCD có góc D= 65 độ, AB= 8cm Và AC vuông góc AD. Vẽ AH vuông góc CD
a) Tính AD
b) C/m AC.HD=BC.HA
a: AB=DC=8cm
Xét ΔADC vuông tại A có cosD=AD/DC
=>AD=3,38(cm)
b: Xét ΔCAB vuông tại C và ΔHAD vuông tại H có
góc CAB=góc HAD(=góc ACD)
=>ΔCAB đồng dạng với ΔHAD
=>CA/HA=CB/HD
=>CA*HD=CB*HA
Cho hình bình hành ABCD có góc a = 3 góc B . Tính số đo các góc của hình bình hành
\(\widehat{A}=\widehat{C}=135^0\)
\(\widehat{B}=\widehat{D}=45^0\)