Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
viên cổn cổn
Xem chi tiết
trang
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 10 2021 lúc 15:39

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

Trịnh Đình Thi
28 tháng 11 2021 lúc 10:48
Lol .ngudoots
Khách vãng lai đã xóa
Trung Nguyễn Thành
Xem chi tiết
Đinh Đức Hùng
18 tháng 8 2017 lúc 16:46

\(x^5+x^4+1=\left(x^5-x^2\right)+\left(x^4+2x^2+1\right)-x^2\)

\(=x^2\left(x^3-1\right)+\left(x^2+1\right)^2-x^2\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\left(x^2-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+x^2-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)

Nguyễn Văn Hải Nam
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2023 lúc 22:01

\(x^5+x^4+2x^3-1\)

\(=x^5+x^4+x^3+x^3-1\)

\(=x^3\left(x^2+x+1\right)+\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3+x-1\right)\)

Nguyễn phạm bảo lâm
Xem chi tiết
Bánh cá nướng :33
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 9 2021 lúc 7:50

\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Ká Đào
Xem chi tiết

Đặt \(A=\left(x+3\right)^4+\left(x+1\right)^4-16\)

\(=\left\lbrack\left(x+2\right)+1\right\rbrack^4+\left\lbrack\left(x+2\right)-1\right\rbrack^4-16\)

Đặt b=x+2

=>\(A=\left(b+1\right)^4+\left(b-1\right)^4-16\)

\(=\left(b^2+2b+1\right)^2+\left(b^2-2b+1\right)^2-16\)

\(=\left(b^2+1\right)^2+4b\left(b^2+1\right)+4b^2+\left(b^2+1\right)^2-4b\left(b^2+1\right)+4b^2-16\)

\(=2\left(b^2+1\right)^2+8b^2-16\)

\(=2\left\lbrack\left(b^2+1\right)^2+4b^2-8\right\rbrack\)

\(=2\left\lbrack b^4+2b^2+1+4b^2-8\right\rbrack=2\left(b^4+6b^2-7\right)\)

\(=2\left(b^2+7\right)\left(b^2-1\right)=2\left(b^2+7\right)\left(b-1\right)\left(b+1\right)\)

\(=2\left\lbrack\left(x+2\right)^2+7\right\rbrack\left(x+2-1\right)\left(x+2+1\right)=2\left(x+1\right)\left(x+3\right)\left\lbrack\left(x+2\right)^2+7\right\rbrack\)

Đặt \(A=\left(x+3\right)^4+\left(x+1\right)^4-16\)

\(=\left\lbrack\left(x+2\right)+1\right\rbrack^4+\left\lbrack\left(x+2\right)-1\right\rbrack^4-16\)

Đặt b=x+2

=>\(A=\left(b+1\right)^4+\left(b-1\right)^4-16\)

\(=\left(b^2+2b+1\right)^2+\left(b^2-2b+1\right)^2-16\)

\(=\left(b^2+1\right)^2+4b\left(b^2+1\right)+4b^2+\left(b^2+1\right)^2-4b\left(b^2+1\right)+4b^2-16\)

\(=2\left(b^2+1\right)^2+8b^2-16\)

\(=2\left\lbrack\left(b^2+1\right)^2+4b^2-8\right\rbrack\)

\(=2\left\lbrack b^4+2b^2+1+4b^2-8\right\rbrack=2\left(b^4+6b^2-7\right)\)

\(=2\left(b^2+7\right)\left(b^2-1\right)=2\left(b^2+7\right)\left(b-1\right)\left(b+1\right)\)

\(=2\left\lbrack\left(x+2\right)^2+7\right\rbrack\left(x+2-1\right)\left(x+2+1\right)=2\left(x+1\right)\left(x+3\right)\left\lbrack\left(x+2\right)^2+7\right\rbrack\)

Phan Thị Khánh Ly
Xem chi tiết
Nguyễn Anh Quân
23 tháng 11 2017 lúc 19:40

x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)

k mk nha

Phan Thị Khánh Ly
23 tháng 11 2017 lúc 19:44

bạn ơi bạn chưa bớt 2x^2 kìa

Trần Bảo Nam
15 tháng 2 2022 lúc 19:38

ngu dốt

Khách vãng lai đã xóa
Phan Thị Khánh Ly
Xem chi tiết
Trịnh Quỳnh Nhi
23 tháng 11 2017 lúc 21:54

x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1

=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)

=(x3-x-1)(x2-x+1)

Nguyễn Anh Quân
23 tháng 11 2017 lúc 21:11

x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)

k mk nha

Vũ Hoàng Minh
23 tháng 1 2022 lúc 20:15

mik chịu

Khách vãng lai đã xóa