Tìm tất cả các cặp số nguyên dương (a,b) thỏa mãn đẳng thức:
\(a^3-b^3+3\left(a^2-b^2\right)+3\left(a-b\right)=\left(a+1\right)\left(b+1\right)+25\)
Tìm tất cả các số nguyên dương a thỏa mãn đẳng thức
\(\sqrt{a^2+\left(2^{a-3}+2^{-a-1}\right)^2}+\sqrt{a^4+a^2+2}=\sqrt{\left(a^2+a+1\right)^2+\left(1+2^{a-3}+2^{-a-1}\right)^2}\)
\(\sqrt{a^2+\left(2^{a-3}+2^{-a-1}\right)^2}+\sqrt{a^4+a^2+2}=\sqrt{\left(a^2+a+1\right)^2+\left(1+2^{a-3}+2^{-a-1}\right)^2}\)
đề thế cơ mà , làm t nghĩ mà đell nghĩ đc j .
làm này .
Không mất tính tổng quát
đặt \(x=a>0,y=2^{a-3}+2^{-a-1}>0,z=a^2+1>0,t=1>0\)
khi đó phương trình trở thành
\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}=\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\left(1\right)\)
Mặt khác ta cũng có :\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\)(2) zới mọi \(x,y,z,t>0\)
\(\Leftrightarrow x^2+y^2+z^2+t^2+2\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge x^2+y^2+z^2+t^2+2\left(xz+yt\right)\)( biến đổi từ cái trên nhá )
\(\Leftrightarrow x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2+y^2+z^2+t^2+2\left(xz+yt\right)\)
\(\Leftrightarrow x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+y^2t^2+2xyzt\Leftrightarrow\left(yz-xt\right)^2\ge0\)(luôn đúng zới mọi x,y,z,t > 0)
zậy từ (1) zà (2) xảy ra khi zà chỉ khi yz=xt
=>\(\left(2^{a-3}+2^{-a-1}\right)\left(a^2+1\right)=a\Leftrightarrow\left(2^{a-3}+2^{-a-1}\right)=\frac{a}{a^2+1}\left(3\right)\)(zì \(a^2+1>0\)
mà lại có \(\frac{a}{a^2+1}\le\frac{1}{2}\)(zì \(\left(a-1\right)^2\ge0\), dấu "=" xảy ra khi a=1 (4)
zà \(\left(2^{a-3}+2^{-a-1}\right)=\frac{2^a}{8}+\frac{1}{2.2^a}\ge\frac{1}{2}\)(theo cô-si nha) ,dấu "=" xảy ra khi a=1 (5)
zậy từ (3) , (4) , (5) \(=>a=1\)là giá trị nguyên dương duy nhất cần tìm
à thì ra ghi dài quá nó cho xuống dòng
làm t cứ tưởng
hì hì
tìm tất cả các cặp số tự nhiên ( a ; b ) thỏa mãn : \(\left(3^a-1\right)\left(3^a-2\right)\left(3^a-3\right)\left(3^a-4\right)\left(3^a-5\right)\left(3^a-6\right)=2016^b+20159\)
giúp mik nhé mik tick cho thank
vì (3^a-1).......(3^a-6) là 6 số tự nhiên liên tiếp nên (3^a-1)......(3^a-6) :6
=> (3^a-1)......(3^a-6) chẵn
mà 20159 lẻ
nên 2016 lẻ
=> b=0
ta có : (3^a-1) .....(3^a-6) = 1+ 20159
=> (3^a-1) ....(3^a-6)= 20160 =8:7;6;5;4;3
=> 3^a-1= 8
3^a=9
a=2
vậy ..............
1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).
2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:
\(M=\left(a-b\right)\left(a+b-1\right)\).
3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).
1)
i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.
ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).
2)
i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .
ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).
Tìm tất cả các số nguyên không âm a;b;c thỏa mãn
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=6abc\) và
\(a^3+b^3+c^3+1⋮a+b+c+1\)
=> Theo bđt cô si ta có : B≥33√(x2+1y2 )(y2+1z2 )(z2+1x2 )
=> B≥33√2·xy ·2·yz ·2·zx =33√8=6
( Chỗ này là thay x2+1y2 ≥2√x2y2 =2·xy và 2 cái kia tương tự vào )
=> Min B=6
Mình nhầm chỗ câu b, sửa lại là :
B≥33√√(x2+1y2 )(y2+1z2 )(z2+1x2 )
Bạn làm tương tự => B≥3√2.
Tìm các số nhuyên dương x sao cho tồn tại các số nguyên dương a;b thỏa mãn đẳng thức :
\(\left(x^2+2\right)^a=\left(2x-1\right)^b\)
Tìm các số nhuyên dương x sao cho tồn tại các số nguyên dương a;b thỏa mãn đẳng thức :
\(\left(x^2+2\right)^a=\left(2x-1\right)^b\)
Tìm tất cả các bộ số nguyên (a,b) thỏa mãn \(3\left(a^2+b^2\right)-7\left(a+b\right)+4=0\)
3b2+3a2-7a-7b+4=0
=>a(3a-7)+b(3b-7)=0
Ta có:
12(3a2 + 3b2 - 7a - 7b + 4) = 0
<=> (6a - 7)2 + (6b - 7)2 = 50
<=> (6a - 7, 6b - 7) = (1, 49; 49, 1; 25, 25)
Cách 2: dễ dàng thấy a, b ≥ 0
Ta có:
Xét a, b ≥ 3
=> 3(a2 + b2) - 7(a + b) + 4 ≥ 9(a + b) - 7(a + b) + 4
= 2(a + b) + 4 > 0
Xét 0 ≤ a ≤ 2; 0 ≤ b tìm được a, b.
Tìm tất cả các bộ số nguyên (a,b) thỏa mãn \(3\left(a^2+b^2\right)-7\left(a+b\right)+4=0\)
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D