So sánh: A= 2 mũ 0 + 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + .... + 2 mũ 2010 và B=2 mũ 2011 -1
So sánh
A= 2 mũ 0+ 2 mũ 1+2 mũ 2+ 2 mũ 3+.. 2 mũ 2010 Và B = 2 mũ 2011 -1
\(A=2^0+2^1+2^2+2^3+...+2^{2010}\)
\(A=1+2+2^2+2^3+...+2^{2010}\)
\(2A=2+2^2+2^3+...+2^{2011}\)
\(2A-A=\left[2+2^2+2^3+...+2^{2011}\right]-\left[1+2+2^2+2^3+...+2^{2010}\right]\)
\(A=2^{2011}-1\)
Mà \(B=2^{2011}-1\)
=> A = B
Ta có: A=\(2^0+2^1+2^2+2^3+...+2^{2010}\)
2A=\(2^1+2^2+2^3+2^4+...+2^{2011}\)
2A-A hay A=\(2^{2011}-2^0\)
=\(2^{2011}-1\)
Vì \(2^{2011}-1=2^{2011}-1\)
\(\Rightarrow\)A=B
Hok tốt nha!!!
`A``=``2^0``+`2^1``+``2^2``+`2^3``+`...`+``2^(2010)`
`2A=2^1+2^2+2^3+2^4+...+2^(2011)`
`2A-A=(2^1+2^2+2^3+2^4+...+2^(2011))-(2^0+2^1+2^2+2^3+...+2^(2010)`
`A=2^(2011)-1`
`A=B`
Tìm x thuộc N biết: a)(x mũ 54)mũ2 = x b)2 mũ x+3 + 2 mũ x=144 Bài 4:Tìm a,b thuộc N biết a) 2 mũ a + 124 =5b b)3 mũ a + 9b = 183 Bài 5:Cho A= 1+2+2 mũ 2+2 mũ 3+...+2 mũ 2010 và B=2 mũ 2011 - 1
b: Ta có: \(2^{x+3}+2^x=144\)
\(\Leftrightarrow2^x\cdot9=144\)
\(\Leftrightarrow2^x=16\)
hay x=4
a) (x ^ 54)^2 = x
x^108 = x
Để: x^108 = x
=> x=0 hoặc x=1
b) 2^x+3 +2^x =144
2^X . 2^3 + 2^x =144
2^x.( 2^3+1) =144
2^x. 9 =144
2^x =144:9
2^x = 16
=> 2^x = 2^4
-Vậy x = 4
a, so sánh : 2 phần 1 nhân 2 nhân 3 + 2 phần 2 nhân 3 nhân 4 + 2 phần 3 nhân 4 nhân 5 + ....... + 2 phần 2009 + 2010 + 2011 và P = 1 phần 2
b, cho A = 1 phần 2 mũ 2 + 1 phần 3 mũ 2 + 1 phần 4 mũ 2 + .....+ 1 phần 100 mũ 2 . chứng minh A < 3 phần 4
3 nhân 2/3 bao nhiêu
1,So sánh
a, 0 mũ 2002 và 0 mũ 2023
b,2022 mũ 0 và 2023 mũ 0
c, 54 mũ 9 và 55 mũ 10
d,(4 + 5) mũ 3 và 4 mũ 2 + 5 mũ 2
đ,9 mũ 2 - 3 mũ 2 và (9-3)mũ 2
Bài 2:Tính giá trị biểu thức
a, 3 mũ 2 x 4 mũ 3 - 3 mũ 2 + 333
b, 5 x 4 mũ 3 + 24 x 5 + 41 mũ 0
c, 2 mũ 3 x 4 mũ 2 + 3 mũ 2 x 5 - 40 x 1 mũ 2023
Giúp mình với,mình đang cần !!
Bài 1:
a) 02002 < 02023
b) 20220 = 20230
c) 549 < 5510
d) ( 4 + 5 )3 > 42 + 52
đ) 92 - 32 > ( 9 - 3 )2
Bài 2:
a) 32 x 43 - 32 + 333
= 9 x 64 - 9 + 333
= 576 - 9 + 333
= 567 + 333
= 900
b) 5 x 43 + 24 x 5 + 410
= 5 x 64 + 24 x 5 + 1
= 5 x ( 64 + 24 ) + 1
= 5 x 88 + 1
= 440 + 1
= 441
c) 23 x 42 + 32 x 5 - 40 x 12023
= 8 x 16 + 9 x 5 - 40 x 1
= 128 + 45 - 40
= 133
Bài 1 :
a) \(0^{2002}=0;0^{2023}=0\Rightarrow0^{2002}=0^{2023}\)
b) \(2022^0=1;2023^0=1\Rightarrow2022^0=2023^0\)
c) \(54^9< 55^9;55^9< 55^{10}\Rightarrow54^9< 55^{10}\)
d) \(\left(4+5\right)^3>\left(4+5\right)^2;\left(4+5\right)^2>4^2+5^2\Rightarrow\left(4+5\right)^3>4^2+5^2\)
đ) \(9^2-3^2=81-9=82;\left(9-3\right)^2=6^2=36\Rightarrow9^2-3^2>\left(9-3\right)^2\)
Bài 2 :
a) \(3^2.4^3-3^2+333=3^2\left(4^3-1\right)+9.37=9.63+9.37=9\left(63+37\right)=9.100=900\)
b) \(5.4^3+24.5+41^0=20.4^2+20.6+1=20\left(16+6\right)+1=20.22+1=441\)
c) \(2^3.4^2+3^2.5-40.1^{2023}=8.16+9.5-40.1=128+45-40=128+5=133\)
so sánh 2 biểu thức
A = 5 mũ 2010 + 1 phần 5 mũ 2011+ 1
B = 5 mũ 2009 +1 phần 5 mũ 2010 +1
Đầu tiên chúng ta sẽ so sánh như sau
5^2010 và 5^2009
vì 2010>2009 nên 5^2010>5^200 (1)
1/5^2011+1 và 1/5^2010+1
vì 2011+1=2012
2010+1=2011
mà 2012>2011 nên 1/5^2011+1>1/5^2010+1 (2)
Từ 1 và 2 ta có thể suy ra A>B
Vậy A>B
ta có 2010 >2009 suy ra 5^2010 >5^2009 suy ra 5^2010 + 1>5^2009 +1 (1)
2011>2010 suy ra 5^2011 >5^2010 suy ra 1/5^2011<1/5^2010 suy ra 1/5^2011 +1 <1/5^2010 + 1 (2)
từ (1) và (2) => A=B
so sánh \A và B :
A= 2 mũ 0 + 2 mũ 1 + 2 mũ 2 + ... + 2 mũ 1994 và B= 2 mũ 1995
so sánh \A và B :
A= 2 mũ 0 + 2 mũ 1 + 2 mũ 2 + ... + 2 mũ 1994 và B= 2 mũ 1995
Dễ mà tự làm nhé!!!!
A = 20 + 2 + 22 + ... + 21994
2A = 2 + 22 + 23 + ... + 21995
2A - A = ( 2 + 22 + 23 + ... + 21995 ) - ( 20 + 2 + 22 + ... + 21994 )
A = 21995 - 20
Mà B = 21995
\(\Rightarrow\)A < B
1/Chứng minh
a/Chứng minh A=2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4+.....+2 mũ 2010 chia hết cho3 và 7
b/Chứng minh B=3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4+.....+3 mũ 2010 chia hết cho 4 và 13
c/Chứng minh C=5 mũ 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4+ +5 mũ 2010 chia hết cho 6 và 31
d/Chứng minh D=7 mũ 1 + 7 mũ 2 +7 mũ 3 + 7 mũ 4 +.....+7 mũ 2010 chia hết cho 8 và 57
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
A= 2 + 2 mũ 3 + 2 mũ 4 + ... + 2 mũ 2010. Hãy so sánh A với 2 mũ 2022 - 2
\(2A=2^2+2^4+2^5+...+2^{2011}\)
\(\Leftrightarrow A=2^{2011}-2< 2^{2022}-2\)
So sánh 2 mũ 9 / 3 mũ 2010 VÀ 3 mũ 9 / 2 mũ 2010
Ta có : \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1^{2019}=1\)
Vì \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}< 1\)
=> \(\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)
Bài làm :
Cách 1:
Ta có :
\(\frac{2^9}{3^{2010}}\div\frac{3^9}{2^{2010}}=\frac{2^9.2^{2010}}{3^{2010}.3^9}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1\)
\(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)
Cách 2 :
Nhận thấy :
29 < 3932010 > 22010\(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)