nhìn vào hình 3, chứng minh tam giác BEM đồng dạng với tam giác CMF biết tam giác ABC là tam giác đều
Cho tam giác ABC biết AB=6cm, AC=7,5. Trên AB và AC lấy điểm D, E sao cho AD=2cm, AE=2,5cm a) Chứng minh tam giác ADE đồng dạng với tam giác ABC b) Kẻ EF // AB. Chứng minh tứ giác BDFE là hình bình hành c) Chứng minh tam giác CEF đồng dạng với tam giác EAD d) Biết BC=9cm. Tính FB và FC
Cho tam giác ABC,M là trung điểm của BC. Từ B và C kẻ các đường thẳng BE và CF vuông góc với AM.
a/So sánh tam giác BEM và tam giác CMF
b/Chứng minh BE // CF
c/Chứng Minh M là trung điểm của EF
a/ Xét tam giác BEM và tam giác CMF có:
góc BEM = góc CFM = 900
BM = MC (M là trung điểm của BC)
góc BME = góc CMF (đối đỉnh)
Do đó: tam giác BEM = tam giác CMF (cạnh huyền - góc nhọn)
Vậy: tam giác BEM = tam giác CMF.
b/ Ta có:
BE vuông góc với AM, CF vuông góc với AM => BE// CF
Vậy: BE//CF
c/ Ta có:
tam giác BEM = tam giác CMF (cmt) =>ME = MF
=> M là trung điểm của EF
Vậy: M là trung điểm của EF
(mấy kí hiệu bạn tự viết nha)
Cho tam giác ABC có đường cao AD, BE, CF cắt nhau tại H.
a, Chứng minh: tam giác ABE đồng dạng với tam giác ACF.
b, Chứng minh: tam giác AEF đồng dạng với tam giác ABC.
c, Chứng minh: tam giác BDF đồng dạng với tam giác BAC.
d, Chứng minh: FC là phân giác của góc DFE.
e, Gọi giao điểm của AD và EF là M, diao điểm của BE và FD là N, giao điểm của CF và ED là P. Chứng minh: FM.DN.BE= ME.NF.PD.
Cho tam giác ABC vuông tại A, AH là đường cao.
a) Chứng minh: tam giác HBA đồng dạng với tam giác ABC
b) Chứng minh: tam giác HBA đồng dạng với tam giác HAC. Từ đó suy ra: AH.AH=BH.HC
c) Kẻ HD vuông góc với AB và HE vuông góc với AC. Chứng minh: tam giác AED đồng dạng với tam giác ABC
d) Nếu AB.AC=4AD.AE thì tam giác ABC là tam giác gì?
Mình đã giải xong câu a, b, c. Nhờ các bạn và quý thầy cô giải giúp câu d. Chỉ cần tóm tắt lời giải thôi cũng được ạ.
d) SADE = 1/2.AD.AE ; SABC = 1/2.AB.AC => SADE / SABC = AD.AE/AB.AC =1/4 (1)
Do tg ADE đồng dạng tg ABC => SADE / SABC = (DE/BC)2 = (AH/BC)2 (2)
Từ (1) và (2) => AH/BC = 1/2 hay AH = !/2 BC. Vậy AH là đường trung tuyến tg ABC, mà AH là đường cao => tg ABC cân tại A
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E theo thứ tự là hình chiếu vuông góc của H trên cạnh AB và AC
a) Tứ giác ADHE là hình gì? Vì sao?
b) Chứng minh tam giác AHD đồng dạng với tam giác ABH; tam giác ADE và tam giác ABC đồng dạng
c) Chứng minh diện tích tam giác ABC >= 4.diện tích tam giác ADE.
Cho tam giác vuông ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH. a) Chứng minh tam giác ABC đồng dạng với tam giác HBA b) Tính diện tích tam giác hba biết tỉ số đồng dạng của tam giác ABC và HBA là\(\dfrac{5}{3}\)
a: XétΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: \(\dfrac{S_{ABC}}{S_{HBA}}=\dfrac{25}{9}\)
nên \(S_{HBA}=24:\dfrac{25}{9}=24\cdot\dfrac{9}{25}=8.64\left(cm^2\right)\)
Cho tam giác ABC. Lấy cạnh AB, AC làm đáy, dựng ra ngoài các tam giác cân đồng dạng ABC', CAB'. lấy cạnh BC làm đáy, dựng vào trong tam giác cân BCA' đồng dạng với hai tam giác cân kia. Chứng minh rằng AB'A'C' là một hình bình hành
Gọi D, E và F theo thứ tự là trung điểm các cạnh BC, CA và AB của tam giác ABC. Ta có :
\(\overrightarrow{AB'}=\overrightarrow{AE}+\overrightarrow{EB'}=\frac{1}{2}\overrightarrow{c}+\overrightarrow{EB'}\)
\(\overrightarrow{AC'}=\overrightarrow{AF}+\overrightarrow{FC'}=\frac{1}{2}\overrightarrow{b}+\overrightarrow{FC'}\)
\(\overrightarrow{AA'}=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{DA'}=\frac{1}{2}\overrightarrow{b}+\frac{1}{2}\overrightarrow{c}+\overrightarrow{DA}\)
Do đó, điều phải chứng minh tương đương với
\(\overrightarrow{AB'}=\overrightarrow{FC'}=\overrightarrow{DA'}\)
Giả sử tam giác ABC định hướng dương. Gọi \(f\) là phép quay vec tơ theo góc \(\frac{\pi}{2}\) và
\(k=\cot\widehat{B'AC}=\cot\widehat{C'AB}\)
Ta có
\(f\left(\overrightarrow{EB'}+\overrightarrow{FC'}\right)=f\left(\overrightarrow{EB'}\right)+f\left(\overrightarrow{FC'}\right)\)
\(=k\overrightarrow{EA}+k\overrightarrow{AF}=\frac{k}{2}\left(\overrightarrow{b}-\overrightarrow{c}\right)\) (do \(\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BC}=0\) )
\(=\frac{k}{2}\overrightarrow{CB}=k\overrightarrow{DB}=f\left(\overrightarrow{DA'}\right)\)
Suy ra điều cần chứng minh
cho tam giác abc có các góc đều nhọn biết ab=15cm.ac=13cm.và đường cao ah=12cm.kẻ he và hf lần lượt cuông góc với ab,ac(a thuộc ab,f thuộc ac)
a)chứng minh tam giác ahe đồng dạng với tam giác abh
b)tính cạnh bc
c)chứng minh tam giác afe đồng dạng với tam giác abc
a, tam giac AHE và ABH có:
BAH là góc chung
góc AEH = AHB = 90
Nên tg AHE đồg dag vs tg ABH (g.g)
b, Áp dụng định lí Py-ta-go vào tam giac vuông AHB và AHC tính dc BH và CH
=> BC = BH +CH
c, AHE đồng dạng ABH (theo a) => AE/AH = AH/AB => AE.AB = AH^2 (1)
Tương tự: AHF đồg dag ACH (g.g) => AF/AH = AH/AC => AF.AC = AH^2 (2)
Từ (1) và (2) => AE.AB = AF.AC => AE/AF = AC/AB
=> AFE đồng dạng ABC (c.g.c)
Cho tam giác ABC có ba đường cao AD, BE và CF cắt nhau tại H. a, Chứng minh: AExAC = AF×AB b, Chứng minh: tam giác AEF đồng dạng với tam giác ABC ;tam giác BFD đồng dạng với tam giác BCA c, Chứng minh tam giác CFD đồng dạng tam giác CBH
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc A chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AB*AF=AE*AC: AB/AE=AC/AF
b: Xet ΔABC và ΔAEF có
AB/AE=AC/AF
góc BAC chung
=>ΔABC đồng dạng với ΔAEF
góc BFC=góc BDA=90 độ
mà góc B chung
nên ΔBFC đồng dạng với ΔBDA
=>BF/BD=BC/BA
=>BF/BC=BD/BA
=>ΔBFD đồng dạng với ΔBCA