Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ko cần bít
Xem chi tiết
Trần Kim Sao
2 tháng 5 2019 lúc 9:15

Ta sẽ áp dụng Côsi cho 3 số:xa+xa+1/a2

Dự đoán "=" xảy ra <=> a=2 và xa=1/a2

=> x=1/8

khi đó ta có 

S= a+1/a2 =(a/8+a/8+1/a2) +6a/8 >= 3 căn bậc 3 của( a/8. a/8. 1/a2) +(6×2)/8=9/4

VậyMinS=9/4 đặt đc khi a=2

Bạch mã hoàng tử
Xem chi tiết
Trần Minh Hiếu
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 8:33

\(A=a+\dfrac{1}{a^2}=\dfrac{3}{4}a+\dfrac{a}{8}+\dfrac{a}{8}+\dfrac{1}{a^2}>=\dfrac{3}{4}\cdot2+\dfrac{3}{4}=\dfrac{27}{4}\)

Dấu = xảy ra khi a=2

Hồ Xuân Phương
Xem chi tiết
Phạm An Huy
25 tháng 2 2023 lúc 22:09

Bạn tham khảo bài làm nhé

Phạm An Huy
27 tháng 2 2023 lúc 9:02

loading...

An Vy
Xem chi tiết
Phùng Minh Quân
10 tháng 1 2020 lúc 15:24

\(P=16\left(a-\frac{1}{2}\right)^2+2\left(b-1\right)^2+\left(\frac{3}{a}+12a\right)+\left(\frac{2}{b}+2b\right)+2\left(2a+b\right)-6\ge14\)

"=" \(\Leftrightarrow\)\(a=\frac{1}{2};b=1\)

Khách vãng lai đã xóa
Hoàng Thiên Di
Xem chi tiết
Phạm Nguyễn Tất Đạt
17 tháng 4 2018 lúc 20:58

\(S=a^2+\dfrac{1}{a^2}\)

\(S=\dfrac{1}{16}a^2+\dfrac{1}{a^2}+\dfrac{15}{16}a^2\)

\(S\ge2\sqrt{\dfrac{1}{16}a^2\cdot\dfrac{1}{a^2}}+\dfrac{15}{16}\cdot2^2\)

\(S\ge2\cdot\dfrac{1}{4}+\dfrac{15}{4}\)

\(S\ge\dfrac{17}{4}\)

Vậy \(MINS=\dfrac{17}{4}\Leftrightarrow a=2\)

Điệp Đỗ
Xem chi tiết
Nguyễn Phúc Lộc
Xem chi tiết
yêu thích toán
Xem chi tiết
tth_new
4 tháng 11 2018 lúc 18:50

a)Dự đoán dấu "=" xảy ra tại \(x=\frac{1}{2}\),hay \(x^2=\frac{1}{4}\).Ta biến đổi như sau:

\(A=\frac{x^2+1}{x}=\frac{x^2+\frac{1}{4}+\frac{3}{4}}{x}=\frac{x^2+\frac{1}{4}}{x}+\frac{3}{4x}\) (1)

Do x > 0 nên \(\frac{x^2+\frac{1}{4}}{x}\ge\frac{2\sqrt{\frac{1}{4}x}}{x}=\frac{2x.\frac{1}{2}}{x}=1\) (BĐT Cô si) (2)

\(0< x\le\frac{1}{2}\Rightarrow\frac{1}{x}\ge2\Rightarrow\frac{3}{4x}\ge\frac{6}{4}=\frac{3}{2}\) (3)

Từ (1),(2) và (3) suy ra \(A\ge1+\frac{3}{2}=\frac{5}{2}\) hay \(A_{min}=\frac{5}{2}\Leftrightarrow x=\frac{1}{2}\)

b)Ta có: \(A=\frac{x^2+1}{x}=\frac{x^2}{x}+\frac{1}{x}=x+\frac{1}{x}\)

Dự đoán xảy ra cực trị tại x = 2,ta biến đổi như sau:

\(x+\frac{1}{x}=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{3x}{4}\)

\(\ge2\sqrt{\frac{1x}{4x}}+\frac{3x}{4}=2.\frac{1}{2}+\frac{3x}{4}\ge1+\frac{3}{2}=\frac{5}{2}\)

Vậy ....

Ngoài ra câu b) còn có thể giải như sau:

Dự đoán xảy ra cực trị tại x = 2,tức là x2 =4 ,ta biến đổi:

\(A=\frac{x^2+4-3}{x}=\frac{x^2+4}{x}-\frac{3}{x}\) (1)

Do x > 0 nên \(\frac{x^2+4}{x}\ge\frac{1\sqrt{4x^2}}{x}=\frac{2.x.2}{x}=4\) (2)

Do \(x\ge2\Rightarrow\frac{1}{x}\le\frac{1}{2}\Rightarrow\frac{3}{x}\le\frac{3}{2}\Rightarrow\frac{-3}{x}\ge\frac{-3}{2}\) (3)

Từ (1),(2) và (3) suy ra \(A\ge4-\frac{3}{2}=\frac{5}{2}\)

Vậy ...

tth_new
4 tháng 11 2018 lúc 18:52

Chết nhầm,bạn sửa chỗ đoạn cuối: \(\frac{x^2+4}{x}\ge\frac{1\sqrt{4x^2}}{x}=\frac{2x.2}{x}=4\)

thành ​​\(\frac{x^2+4}{x}\ge\frac{2\sqrt{4x^2}}{x}=\frac{2x.2}{x}=4\) mới chính xác nha!Mình đánh nhanh quá nên nhầm:v Đánh nhanh mà còn mất 11 phút =))))

cutecutetrangtrangđỗ
3 tháng 12 2019 lúc 4:43

giải theo cách lớp mà , em mới có học lớp 5

Khách vãng lai đã xóa