Chứng tỏ rằng : 1/1.2+1/2.3+1/3.4+...+1/49+50<1
(1/1.2+1/2.3+1/3.4+…+1/49.50)x=49/50
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{49.50}\right)x=\frac{49}{50}\)
\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)x=\frac{49}{50}\)
\(\left(1-\frac{1}{50}\right)x=\frac{49}{50}\)
\(\frac{49}{50}x=\frac{49}{50}\)
\(x=\frac{\frac{49}{50}}{\frac{49}{50}}\)
\(x=1\)
Vậy \(x=1\)
Gọi A=1/1.2+1/2.3+1/3.4+...+1/49.50
A=1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50
A=1-1/50
A=49/50
Viết lại ta có: (1/1.2+1/2.3+1/3.4+...+1/49.50)x=49/50
49/50x=49/50
=> x=1
Chứng tỏ rằng :
\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) +.....+\(\frac{1}{49.50}\) < 1
1/1.2+1/2.3+...+1/49.50
=1/1-1/50
=49/50 bé hơn 1 nên cái đó bé hơn 1
ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
vì \(\frac{49}{50}<1\)
nên \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}<1\)
Chứng minh rằng 1/1.2 + 1/2.3 + 1/3.4 +........+1/49+50 = 1/26 + 1/27 +1/28 +.....+ 1/50
1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50
=1/1-1/2+1/3-1/4+...+1/49-1/50
=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)
=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)
=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25
=1/26+1/27+...+1/50 (đpcm)
CMR: 1/1.2+1/2.3+1/3.4+....+1/49.50=1/26+1/27+.....+1/49+1/50
1/1.2 + 1/2.3 + ...... + 1/49.50
= 1/1 - 1/2 + 1/2 - - .... - 1/50 = 1 - 1/50 = 49/50
Cho A= 1/1.2 +1/2.3 +1/3.4 +......+1/49+50. Chứng minh rằng 7/ 12 < A < 5/6
\(A=\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=\frac{1}{1}-\frac{1}{50}\)
\(A=\frac{49}{50}\)
Vì \(\frac{245}{420}< \frac{245}{294}< \frac{245}{250}\)
Vậy \(\frac{7}{12}< \frac{49}{50}< \frac{5}{6}\)
Cho :A=1/1.2 +1/2.3 + 1/3.4 + .......+1/49+50. Chứng minh rằng 7/12 < A < 5/6.
Hình như phân số cuối sai đề bn nhỉ?
Tính tổng
A=1/1.2+1/2.3+1/3.4+..........+1/49+1/50
AI LÀM NHANH NHẤT MÌNH SẼ TICK
chứng minh rằng \(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\dfrac{99.100-1}{100!}< 2\)
help me
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+............+\frac{99.100-1}{100!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+..........+\frac{99.100}{100!}-\frac{1}{100!}\)
\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+.........+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+.....+\frac{1}{100!}\right)\)
\(=\left(1+1+\frac{1}{2!}+.........+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+....+\frac{1}{100!}\right)\)
\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)