Bài1. Giải phương trình sau x^2-2×x+3×|x-1|<3 giúp mình nha!!! Thanks!
Giải phương trình sau: |x-2|(x-1)(x+1)(x+2)=4.
Nếu x lớn hơn hoặc bằng 2, có:
|x - 2|(x - 1)(x + 1)(x + 2) = 4
(x - 2)(x + 2)(x - 1)(x + 1) = 4
(x2 - 4)(x2 - 1) = 4
x4 - 4x2 + 4 = 4
(x2 - 2)2 = 4 => x2 - 2 = 2 => x2 = 4 => x = 2
Nếu x nhỏ hơn 2, có:
|x - 2|(x - 1)(x + 1)(x + 2) = 4
(2 - x)(2 + x)(x - 1)(x + 1) = 4
(4 - x2)(x2 - 1) = 4
5x2 - x4 - 4 = 4
x2 - (x4 - 4x2 + 4) = 4
x2 - 4 - (x2 - 2)2 = 0
(x - 2)(x + 2) - (x2 - 2)2 = 0
Giải các phương trình sau:
\(\frac{1}{x-2}+3=\frac{3-x}{x-2}\)
\(\frac{1}{x-2}+3=\frac{3-x}{x-2}\) (ĐKXĐ: x≠2)
⇔ \(\frac{1+3\left(x-2\right)}{x-2}=\frac{3-x}{x-2}\)
⇔ \(1+3x-6=3-x\)
⇔ 4x=8
⇔ x=2 ( không thỏa nãn ĐKXĐ)
Vậy phương trình vô nghiệm
giải các phương trình sau:
(x2 +2x-1) (x2 + 2x -3)=3
Đặt bt trong ngoặc đầu tiên = t
pt trở thành
\(t\left(t-2\right)-3=0\Leftrightarrow t^2-2t-3=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=-1\end{matrix}\right.\)
với t=3, ta có:
\(x^2+2x-1=3\Leftrightarrow x^2+2x-4=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)
t= -1 tương tự
Giải phương trình sau
\(\sqrt[2]{x-2}+\sqrt{x+1}\)= 3
Giải phương trình sau : (4x + 3)^2 * (x + 1) * (2x + 1) = 810.
\(pt\Leftrightarrow\left(16x^2+24x+9\right)\left(2x^2+3x+1\right)=810\)
\(\Leftrightarrow32x^4+48x^3+16x^2+48x^3+72x^2+24x+18x^2+27x+9-810=0\)
\(\Leftrightarrow32x^4+96x^3+106x^2+51x-801=0\)
\(\Leftrightarrow32x^4+96x^3+106x^2+318x-267x-801=0\)
\(\Leftrightarrow\left(x+3\right)\left(32x^3+106x-267\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-3\right)\left(16x^2+24x+189\right)=0\)
Vì \(16x^2+24x+89=\left(4x+3\right)^2+80\ge80\) nên \(\orbr{\begin{cases}x+3=0\\2x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{3}{2}\end{cases}}\)
Ta có: \(\left(4x+3\right)^2\left(x+1\right)\left(2x+1\right)=810\)
\(\Leftrightarrow\left(16x^2+24x+9\right)\left(2x^2+3x+1\right)=810\)
Đặt \(a=2x^2+3x+1\)
\(\Rightarrow\left(8a+1\right)a=810\)
\(\Leftrightarrow8a^2+a-810=0\)
\(\Leftrightarrow\left(a-10\right)\left(8a+81\right)=0\)
\(\Rightarrow\left(2x^2+3x-9\right)\left(16x^2+24x+189\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-3\right)\left(16x^2+24x+189\right)=0\)
Lại có: \(16x^2+24x+189=\left(4x+3\right)^2+80>0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\2x-3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-3\\x=\frac{3}{2}\end{cases}}\)
Giải phương trình sau :
4(x-1)3 - (x+1)2 = x +13
Ta có \(4\left(x-1\right)^2-\left(x+1\right)^2=x+13\Leftrightarrow4\left(x^3-3x^2+3x-1\right)-\left(x^2+2x+1\right)=x+13\)
\(\Leftrightarrow4x^3-12x^2+12x-4-x^2-2x-1-x-13=0\)
\(\Leftrightarrow4x^3-13x^2+9x-18=0\)\(\Leftrightarrow\left(4x^3-12x^2\right)-\left(x^2-3x\right)+\left(6x-18\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(4x^2-x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x-3=0\\4x^2-x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\4x^2-x+6=0\left(1\right)\end{cases}}}\)
Ta thấy (1) vô nghiệm vì \(\Delta=1-24=-23< 0\)
Vậy phương trình có nghiệm x=3
Giải phương trình sau
\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
Ta có pt
\(\Leftrightarrow\sqrt[3]{x-2}-1+\sqrt{x+1}-2=0\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt[3]{\left(x-2\right)^2}+\sqrt[3]{x-2}+1}+\dfrac{x-3}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{\sqrt[3]{\left(x-2\right)^2}+\sqrt[3]{x-2}+1}+\dfrac{1}{\sqrt{x+1}+2}\right)=0\)
<=> x=3
Giải phương trình sau:
X - 3/2 + X - 5/6 = -1/3
Giúp mình nhé!!!
X-\(\frac{3}{2}\)+X-\(\frac{5}{6}\)=\(-\frac{1}{3}\)
➜2X=\(-\frac{1}{3}\)+\(\frac{3}{2}+\frac{5}{6}\)
➜ 2X=2
➜X = 1
Vậy....................
Giải các phương trình sau :
A) \(\dfrac{7x-1}{2}\)+2x=\(\dfrac{16-x}{3}\)
B)\(\dfrac{x+1}{x-2}\)+\(\dfrac{x-1}{x+2}\)=\(\dfrac{2\left(x^2+2\right)}{x^2-4}\)
a)\(\dfrac{7x-1}{2}+2x=\dfrac{16-x}{3}\)
\(\dfrac{\left(7x-1\right).3}{2.3}+\dfrac{2x.6}{6}=\dfrac{\left(16-x\right)2}{3.2}\)
khử mẫu
=> (7x-1).3+12x=(16-x).2
=>21x-3+12x=-2x+32
=>21x-3+12x+2x-32=0
=>35x-35=0
b)\(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{x^2-4}\)
ĐKXĐ: x khác +-2
\(\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\)
khử mẫu
(x+1).(x+2)+(x-1)(x-2)=2x2+4
=>x2+x+2+x+2+x2-2x-x+2=2x2+4
=>x2+x+2+x+2+x2-2x-x+2-2x2-4=0
=>(x2+x2-2x2)+(x+x-2x-x)+(2+2+2-4)=0
=>-x+2=0
=>-x=-2
=>x=2(loại)
vậy pt vô nghiệm