Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Triết
Xem chi tiết
Huy Hoang
18 tháng 4 2020 lúc 15:59

B C D M H A E K N

a, Xét 2 tam giác vuông : ABM và DBM

BM chung

\(\widehat{ABM}=\widehat{DBM}\)( do BM là phân giác góc B )

\(\Rightarrow\Delta ABM=\Delta DBM\)( cạnh huyền - góc nhọn )

\(\Rightarrow BA=BD\)( 2 cạnh tương ứng )

b. Xét 2 tam giác vuông : ABC và DBE có :

BA = BD ( c/m ỏ câu a )

\(\widehat{B}\)chung

\(\Rightarrow\Delta ABC=\Delta DBE\)( cạnh góc vuông - góc nhọn )

c, Xét 2 tam giác vuông : AMK và DMH

AM = DM ( 2 cạnh tg ứng do ABM = DBM )

\(\widehat{AMK}=\widehat{DMH}\)( đối đỉnh )

\(\Rightarrow\Delta AMK=\Delta DMH\)( cạnh huyền - góc nhọn )

\(\Rightarrow MK=MH\)( 2 cạnh tg ứng )

Xét 2 tam giác vuông : MNK và MNH

MK = HM ( cmt )

MN chung

\(\Rightarrow\Delta MNK=\Delta MNH\)( cạnh huyền - góc vuông )

\(\Rightarrow\widehat{MNK}=\widehat{MNH}\)( 2 góc tg ứng )

=> NM là tia phân giác của \(\widehat{HMK}\)( đpcm ) (1)

d, Do AK = DH ( 2 cạnh tg ứng \(\Delta AMK=\Delta DMH\))

KN = HN ( 2 cạnh tg ứng \(\Delta MNK=\Delta MNH\))

\(\Rightarrow AN=AK+KN=DH+HN=DN\)

Xét 2 tam giác : ABN và DBN

AB = DB ( cmt )

BN chung 

AN = BN ( cmt )

\(\Rightarrow\Delta ABN=\Delta DBN\left(c-c-c\right)\)

\(\Rightarrow\widehat{ANB}=\widehat{DNB}\)( 2 góc tg ứng )

=> NB là tia phân giác \(\widehat{AND}\)( 2 )

Từ (1)(2) 

=> B , M , N thẳng hàng

Khách vãng lai đã xóa
Nguyễn Thị Minh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2022 lúc 20:21

a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có

BM chung

góc ABM=góc DBM

Do đó: ΔBAM=ΔBDM

=>BA=BD

b: XétΔABC vuông tại A và ΔDBE vuông tại D có

BA=BD

góc ABC chung

Do đo: ΔABC=ΔDBE

Nguyễn Thị Cẩm Tú
31 tháng 12 2022 lúc 20:36

a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có

BM chung

góc ABM=góc DBM (BM là tia phân giác của góc B)

góc D= góc A=90độ

Do đó: ΔBAM=ΔBDM( cạnh huyền - góc nhọn )

=>BA=BD (2 cạnh tương ứng)

 

Hue Truong Thi
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 2 2021 lúc 17:54

a) Xét ΔBAM vuông tại A và ΔBDM vuông tại D có 

BM chung

\(\widehat{ABM}=\widehat{DBM}\)(BM là tia phân giác của \(\widehat{ABD}\))

Do đó: ΔBAM=ΔBDM(cạnh huyền-góc nhọn)

Suy ra: BA=BD(hai cạnh tương ứng)

Xét ΔABD có BA=BD(cmt)

nên ΔABD cân tại B(Định nghĩa tam giác cân)

b) Ta có: ΔBAM=ΔBDM(cmt)

nên MA=MD(hai cạnh tương ứng)

Ta có: BA=BD(cmt)

nên B nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MA=MD(cmt)

nên M nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BM là đường trung trực của AD(Đpcm)

c) Xét ΔAME vuông tại A và ΔDMC vuông tại D có 

MA=MD(cmt)

\(\widehat{AME}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔAME=ΔDMC(cạnh góc vuông-góc nhọn kề)

Suy ra: ME=MC(hai cạnh tương ứng)

Xét ΔMEC có ME=MC(cmt)

nên ΔMEC cân tại M(Định nghĩa tam giác cân)

d) Ta có: ΔAME=ΔDMC(cmt)

nên AE=DC(hai cạnh tương ứng)

Ta có: BA+AE=BE(A nằm giữa B và E)

BD+DC=BC(D nằm giữa B và C)

mà BA=BD(cmt)

và AE=DC(cmt)

nên BE=BC

Xét ΔBEC có BE=BC(cmt)

nên ΔBEC cân tại B(Định nghĩa tam giác cân)

hay \(\widehat{BEC}=\dfrac{180^0-\widehat{EBC}}{2}\)(Số đo của một góc ở đáy trong ΔBEC cân tại B)(3)

Ta có: ΔBAD cân tại B(cmt)

\(\Leftrightarrow\widehat{BAD}=\dfrac{180^0-\widehat{ABD}}{2}\)(Số đo của một góc ở đáy trong ΔBDA cân tại B)

hay \(\widehat{BAD}=\dfrac{180^0-\widehat{EBC}}{2}\)(4)

Từ (3) và (4) suy ra \(\widehat{BAD}=\widehat{BEC}\)

mà \(\widehat{BAD}\) và \(\widehat{BEC}\) là hai góc ở vị trí đồng vị

nên AD//EC(Dấu hiệu nhận biết hai đường thẳng song song)

anh yêu chị
8 tháng 2 2022 lúc 21:32

cặc ko bít làm

Tien Tien
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 9 2021 lúc 22:16

a: Ta có: \(\widehat{BMA}+\widehat{ABM}=90^0\)

\(\widehat{BMD}+\widehat{DBM}=90^0\)

mà \(\widehat{ABM}=\widehat{DBM}\)

nên \(\widehat{BMA}=\widehat{BMD}\)

c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có 

BM chung

\(\widehat{ABM}=\widehat{DBM}\)

Do đó: ΔBAM=ΔBDM

Suy ra: MA=MD

Xét ΔAME vuông tại A và ΔDMC vuông tại D có 

MA=MD

\(\widehat{AME}=\widehat{DMC}\)

Do đó: ΔAME=ΔDMC

Nguyễn Thỏ Bede
Xem chi tiết
Đô xuân Hùn
Xem chi tiết
Đặng Tú Phương
9 tháng 1 2019 lúc 19:12

Hình tự vẽ

a, \(\Delta BAM\)và \(\Delta BDM\)

\(\widehat{ABM}=\widehat{DBM}\left(gt\right)\)

\(AM\): cạnh chung 

\(\widehat{BAM}=\widehat{BDM}\left(=90^o\right)\)

\(\Rightarrow\Delta BAM=\Delta BDM\left(ch-gn\right)\)

\(\Rightarrow BA=BD\)(2 cạnh tương ứng )

Để nghĩ tiếp :(

Hoàng hôn  ( Cool Team )
27 tháng 3 2020 lúc 19:36

Ta có:

∠AMB+∠ABM=90o

∠BMD+∠MBD=900

Mà ∠AMB=∠BMD (gt)

=> ∠ABM=∠MBD

Xét ΔBAM và ΔBAM có:

∠ABM=∠MBD (gt)

BM  chung

∠ABM=∠MBD (cmt)

=>  ΔBAM = ΔBAM (g-c-g)

=> BA=BD (2 cạnh tương ứng)

b,Xét ΔABC và ΔDBE có:

∠ABC  chung

∠BAC=∠BDM=90o

BA=BD (cmt)

=> ΔABC = ΔDBE (g-c-g)

c,Ta có

BC⊥ED

AK⊥ED

=>  BC//AK hay BC//AN

=> ∠ANM=∠MBC ( 2 góc slt) (1)

Mà:

DH⊥AC

BA⊥AC

=> BA//DH hay BA//DN

=> ∠MND=∠ABM ( 2 góc so le trong) (2)

Mà ∠ABM=∠MBD ( vì BM là tia phân giác của góc ABC)

Từ(1) và (2) =>∠ANM=∠MND

=> NM là tia phân giác của góc HMK

d,Ta có BM là tia phân giác của góc ABC (3)

Và NM là tia phân giác của góc HMK

Vì ∠ANM=∠MBC

    ∠MND=∠ABM

=> ∠ANM=∠MBC=∠MND=∠ABM

=> BN là tia phân giác của góc ABC (4)

Từ (3) và (4) => B,M,N thẳng hàng

Khách vãng lai đã xóa
Trần Mạnh Hùng
26 tháng 4 2020 lúc 14:57

odfgjpodfpofsgpsf

Khách vãng lai đã xóa
Hàn_Ly_Tuyết 123
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 6 2017 lúc 2:40

Hoàng Minh Hiếu
Xem chi tiết