Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thien Nguyen
Xem chi tiết
Nguyen T Linh
Xem chi tiết
Phạm Khánh Linh
19 tháng 3 2020 lúc 16:11

Phương trình bậc nhất một ẩn

Phương trình bậc nhất một ẩn

Phương trình bậc nhất một ẩn

Phương trình bậc nhất một ẩn

Khách vãng lai đã xóa
zxcvbnm
Xem chi tiết
gh
Xem chi tiết
Quỳnh
22 tháng 4 2020 lúc 21:57

Bài làm

a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)

\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)

\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)

\(\Leftrightarrow6x+4=0\)

\(\Leftrightarrow x=-\frac{4}{6}\)

\(\Leftrightarrow x=-\frac{2}{3}\)

Vậy x = -2/3 là nghiệm.

Khách vãng lai đã xóa
Tran Le Khanh Linh
23 tháng 4 2020 lúc 7:32

@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4

Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
23 tháng 4 2020 lúc 7:36

b) Bạn kiểm tra lại đề bài

c) \(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8}{16x^2-1}\left(x\ne\pm\frac{1}{4}\right)\)

\(\Leftrightarrow\frac{3}{1-4x}-\frac{2}{4x+1}+\frac{8}{16x^2-1}=0\)

\(\Leftrightarrow\frac{-3}{4x+1}-\frac{2}{4x+1}+\frac{8}{\left(4x+1\right)\left(4x-1\right)}=0\)

\(\Leftrightarrow\frac{-3\left(4x-1\right)}{\left(4x-1\right)\left(4x+1\right)}-\frac{2\left(4x-1\right)}{\left(4x-1\right)\left(4x+1\right)}+\frac{8}{\left(4x-1\right)\left(4x+1\right)}=0\)

\(\Leftrightarrow\frac{-12x+3}{\left(4x-1\right)\left(4x+1\right)}-\frac{8x-2}{\left(4x-1\right)\left(4x+1\right)}+\frac{8}{\left(4x-1\right)\left(4x+1\right)}=0\)

\(\Leftrightarrow\frac{-12x+3-8x+2+8}{\left(4x-1\right)\left(4x+1\right)}=0\)

=> -20x+13=0

<=> -20x=-13

<=> \(x=\frac{13}{20}\left(tmđk\right)\)

Khách vãng lai đã xóa
Ahihi
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 4 2020 lúc 13:26

a) ĐKXĐ: \(x\notin\left\{\frac{1}{3};\frac{-11}{3}\right\}\)

Ta có: \(\frac{2}{\left(1-3x\right)\left(3x+11\right)}=\frac{1}{9x^2-6x+1}-\frac{3}{\left(3x+11\right)^2}\)

\(\Leftrightarrow\frac{2\left(1-3x\right)\left(3x+11\right)}{\left(1-3x\right)^2\cdot\left(3x+11\right)^2}=\frac{\left(3x+11\right)^2}{\left(1-3x\right)^2\cdot\left(3x+11\right)^2}-\frac{3\left(1-3x\right)^2}{\left(1-3x\right)^2\cdot\left(3x+11\right)^2}\)

\(\Leftrightarrow-18x^2-60x+22=9x^2+66x+121-3\left(1-6x+9x^2\right)\)

\(\Leftrightarrow-18x^2-60x+22-9x^2-66x-121+3\left(1-6x+9x^2\right)=0\)

\(\Leftrightarrow-27x^2-126x-99+3-18x+27x^2=0\)

\(\Leftrightarrow-144x-96=0\)

\(\Leftrightarrow-144x=96\)

hay \(x=\frac{-2}{3}\)(tm)

Vậy: \(x=\frac{-2}{3}\)

ma
Xem chi tiết
Hoàng Ngọc Anh
29 tháng 4 2020 lúc 14:59

Phương trình bậc nhất một ẩn

Phương trình bậc nhất một ẩn

Phương trình bậc nhất một ẩn

Nguyễn Thị Minh Huyền
Xem chi tiết
๖²⁴ʱ๖ۣۜTɦủү❄吻༉
27 tháng 4 2020 lúc 8:13

ĐKXĐ : \(\hept{\begin{cases}x-2\ne0\\3-4x\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\x\ne\frac{3}{4}\end{cases}}}\)

\(\frac{5}{x-2}+\frac{6}{3-4x}=0\)

\(\frac{5\left(3-4x\right)}{\left(x-2\right)\left(3-4x\right)}+\frac{6\left(x-2\right)}{\left(3-4x\right)\left(x-2\right)}=0\)

\(15-20x+6x-12=0\)

\(3-14x=0\Leftrightarrow14x=3\Leftrightarrow x=\frac{3}{14}\)theo ĐKXĐ : x thỏa mãn 

Khách vãng lai đã xóa
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 4 2020 lúc 11:02

a) ĐKXĐ: \(x\notin\pm\frac{1}{3}\)

Ta có: \(\frac{12x+1}{6x-2}-\frac{9x-5}{3x+1}=\frac{108x-36x^2-9}{4\left(9x^2-1\right)}\)

\(\Leftrightarrow\frac{12x+1}{2\left(3x-1\right)}-\frac{9x-5}{3x+1}=\frac{9\left(12x-4x^2-1\right)}{4\left(9x^2-1\right)}\)

\(\Leftrightarrow\frac{2\left(12x+1\right)\left(3x+1\right)}{4\left(3x-1\right)\left(3x+1\right)}-\frac{4\left(9x-5\right)\left(3x-1\right)}{4\left(3x+1\right)\left(3x-1\right)}=\frac{9\left(12x-4x^2-1\right)}{4\left(3x+1\right)\left(3x-1\right)}\)

\(\Leftrightarrow72x^2+30x+2-\left(108x^2-96x+20\right)=108x-36x^2-9\)

\(\Leftrightarrow72x^2+30x+2-108x^2+96x-20-108x+36x^2+9=0\)

\(\Leftrightarrow18x-9=0\)

\(\Leftrightarrow9\left(2x-1\right)=0\)

mà 9≠0

nên 2x-1=0

⇔2x=1

hay \(x=\frac{1}{2}\)(tm)

Vậy: \(x=\frac{1}{2}\)

b)ĐKXĐ: x≠0

Ta có: \(x+\frac{1}{x}=x^2+\frac{1}{x^2}\)

\(\Leftrightarrow x+\frac{1}{x}-x^2-\frac{1}{x^2}=0\)

\(\Leftrightarrow\frac{x^3}{x^2}+\frac{x}{x^2}-\frac{x^4}{x^2}-\frac{1}{x^2}=0\)

\(\Leftrightarrow x^3+x-x^4-1=0\)

\(\Leftrightarrow x^3\left(1-x\right)+\left(x-1\right)=0\)

\(\Leftrightarrow x^3\left(1-x\right)-\left(1-x\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(x^3-1\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(x-1\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow-\left(x-1\right)^2\cdot\left(x^2+x+1\right)=0\)(1)

Ta có: \(x^2+x+1=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)(2)

Từ (1) và (2) suy ra x-1=0

hay x=1(tm)

Vậy: x=1

c) ĐKXĐ: x≠0

Ta có: \(\frac{1}{x}+2=\left(\frac{1}{x}+2\right)\left(x^2+2\right)\)

\(\Leftrightarrow\frac{1}{x}+2-\left(\frac{1}{x}+2\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\left(\frac{1}{x}+2\right)\left(2-x^2-2\right)=0\)

\(\Leftrightarrow\left(\frac{1}{x}+2\right)\cdot\left(-x^2\right)=0\)(3)

Ta có: 1≠0

x≠0

Do đó: \(\frac{1}{x}\ne0\)

\(\Leftrightarrow\frac{1}{x}+2\ne0\)(4)

Từ (3) và (4) suy ra x=0(ktm)

Vậy: x∈∅

d) ĐKXĐ: x≠0

Ta có: \(\left(x+1+\frac{1}{x}\right)^2=\left(x-1-\frac{1}{x}\right)^2\)

\(\Leftrightarrow\left(x+1+\frac{1}{x}\right)^2-\left(x-1-\frac{1}{x}\right)^2=0\)

\(\Leftrightarrow\left(x+1+\frac{1}{x}+x-1-\frac{1}{x}\right)\left(x+1+\frac{1}{x}-x+1+\frac{1}{x}\right)=0\)

\(\Leftrightarrow2x\cdot\left(2+\frac{2}{x}\right)=0\)

\(\Leftrightarrow4x\left(1+\frac{1}{x}\right)=0\)

mà 4≠0

và x≠0

nên \(1+\frac{1}{x}=0\)

\(\Leftrightarrow\frac{1}{x}=-1\)

hay x=-1(tm)

Vậy: x=-1

Toán-LÍ-Hoá (Hội Con 🐄)...
Xem chi tiết
Lê Ng Hải Anh
25 tháng 6 2019 lúc 7:58

ĐKXĐ: \(x\ne\pm2\)

\(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)

\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(3x-2\right)+1}{\left(x+2\right)\left(x-2\right)}\)

\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-2x+1\)

\(\Leftrightarrow-23x=7\)

\(\Leftrightarrow x=\frac{-7}{23}\left(tm\right)\)

Vậy: \(S=\left\{-\frac{7}{23}\right\}\)

=.= hk tốt!!

Hn . never die !
25 tháng 6 2019 lúc 8:00
Giải :

\(\text{ĐKXĐ}\: :\: x\ne\pm2\)

\(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)

 \(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)}{x^2-4}=\frac{x\left(3x-2\right)+1}{x^2-4}\)

Khử mẫu : \(\left(-6x^2-12x+x+2\right)+\left(9x^2-18x+4x-8\right)=3x^2-2x+1\)

           \(\Leftrightarrow-23x=7\Leftrightarrow x=\frac{7}{23}\).