B = (5x – 4y)2 – (6x + 4y).(5x – 4y) + (3x + 2y)2
thu gọn giúp mk nhé số 2 là mũ nhé
B = (5x – 4y)2 – (6x + 4y).(5x – 4y) + (3x + 2y)2 rút gọn giúp mk nhé số 2 là mũ nhé
\(B=\left(5x-4y\right)^2-\left(6x+4y\right)\left(5x-4y\right)+\left(3x+2y\right)^2\)
\(B=\left(5x-4y\right)\left(5x-4y-6x-4y\right)+\left(3x+2y\right)^2\)
\(B=\left(5x-4y\right)\left(-x-8y\right)+\left(3x+2y\right)^2\)
\(B=-5x^2-40xy+4xy+32y^2+9x^2+12xy+4y^2\)
\(B=4x^2-24xy+36y^2\)
\(B=x^2-6xy+6y^2\)
Bài chưa đc ktra lại đâu . Có gì sai sót thì bỏ qua
Cho tỉ lệ thức: (5x - 2y)/(3x + 4y) . Tính tỉ số x : y
Giúp mk nhé.thank mn nhé!!!
Ta dễ dàng thấy : \(y\ne0\)nên ta có thể chia hai số hạng của tỉ số \(\frac{5x-2y}{3x+4y}\)cho \(y\). Ta có:
\(\frac{\frac{5x}{y}-2}{\frac{3x}{y}+4}=\frac{3}{4}\)\(\)
Đặt \(\frac{x}{y}\)là t ta có: 4.(5t - 2) = 3.(3t + 4)
Giải đc t = \(\frac{20}{11}\)hay \(\frac{x}{y}=\frac{20}{11}\)
hok tốt
a)(-6x^3y^4+4x^4y^3):2x^3y^3. b)(5x^4y^2-x^3y^2):x^3y^2. c)(27x^3y^5+9x^2y^4-6x^3y^3):(-3x^2y^3)
a: \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{-6x^3y^4}{2x^3y^3}+\dfrac{4x^4y^3}{2x^3y^3}\)
\(=-3y+2x\)
b: \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}=\dfrac{5x^4y^2}{x^3y^2}-\dfrac{x^3y^2}{x^3y^2}\)
\(=5x-1\)
c: \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=-\dfrac{27x^3y^5}{3x^2y^3}-\dfrac{9x^2y^4}{3x^2y^3}+\dfrac{6x^3y^3}{3x^2y^3}\)
\(=-9xy^2-3y+2x\)
a) \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{2x^3y^3\cdot\left(-3y+2x\right)}{2x^3y^3}\)
\(=-3y+2x\)
\(=2x-3y\)
b) \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}\)
\(=\dfrac{5x\cdot x^3y^2-x^3y^2\cdot1}{x^3y^2}\)
\(=\dfrac{x^3y^2\cdot\left(5x-1\right)}{x^3y^2}\)
\(=5x-1\)
c) \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot-9xy^2+-3x^2y^3\cdot-3y+-3x^2y^3\cdot2x}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot\left(-9xy^2-3y+2x\right)}{-3x^2y^3}\)
\(=-9xy^2-3x+2x\)
Tìm bậc của các đa thức sau:
a) \(x^3y^3+6x^2y^2+12xy-8
\)
b) \(x^2y+2xy^2-3x^3y+4xy^5\)
c) \(x^6y^2+3x^6y^3-7x^5y^7+5x^4y\)
d) \(2x^3+x^4y^5+3xy^7-x^4y^5+10-xy^7\)
e) \(0,5x^2y^3+3x^2y^3z^3-a.x^2y^3-x^4-x^2y^3\) với a là hằng số
a, bậc 6
b, bậc 6
c, bậc 12
d, bậc 9
e, bậc 8
Rút gọn biểu thức
a) 7x(4y-x) + 4y (y-7x) - (2y^2 -3,5x)
b) 3x(5x^2 -2) -5x^2 (7+3x) -2,5( 2-14x^2)
c) 2x^3 (x-1) (x+1) -5x(x+1)
Rút gọn biểu thức
a) 7x(4y-x) + 4y (y-7x) - (2y^2 -3,5x)
b) 3x(5x^2 -2) -5x^2 (7+3x) -2,5( 2-14x^2)
c) 2x^3 (x-1) (x+1) -5x(x+1)
B1. Cho 5x = −4y . Tìm x, y biết:
a) x + y = 45; b) −3x − 2y = 24 ;
c) xy =162; d) 2 2 2x − y = −8 .
giúp mik nha lên nhé, mik sẽ tim ngay:>>>
a: Ta có: 5x=-4y
nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}\)
mà x+y=45
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}=\dfrac{x+y}{\dfrac{1}{5}-\dfrac{1}{4}}=\dfrac{45}{-\dfrac{1}{20}}=900\)
Do đó: x=180; y=-225
b: Ta có: \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}\)
nên \(\dfrac{-3x}{-\dfrac{3}{5}}=\dfrac{-2y}{\dfrac{1}{2}}\)
mà -3x-2y=24
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{-3x}{-\dfrac{3}{5}}=\dfrac{-2y}{\dfrac{1}{2}}=\dfrac{-3x-2y}{-\dfrac{3}{5}+\dfrac{1}{2}}=\dfrac{24}{\dfrac{-1}{10}}=-240\)
Do đó: \(\left\{{}\begin{matrix}-3x=144\\-2y=-120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-48\\y=60\end{matrix}\right.\)
Rút gọn: \(\frac{2x^2-4xy}{x^2+4xy+4y^2}:\frac{4y^2-x^2}{x^2-4xy+4y^2}:\frac{5x^2y-10xy^2}{x^3+6x^2y+12xy^2+8y^3}\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y-x\right)\left(2y+x\right)}{\left(x-2y\right)^2}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
Điều kiện: \(x\ne2y;x\ne-2y;x\ne0;y\ne0\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y+x\right)}{\left(x-2y\right)}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\times\frac{x-2y}{x+2y}\times\frac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}=\frac{2\left(x-2y\right)}{5y}\)
1/2.(6x-2y).(3x+y)
(2/3z-2/5x).(1/3z+1/5x).1/2
(5y-3x).1/4.(12x+20y)
(3/4y-1/2x).(x+3/2y).2
(a+b+c).(a+b-c)
(x-y+z).(x+y-z)
mng giúp mình vs ạ
\(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\dfrac{1}{2}.2\left(3x-y\right)\left(3x+y\right)=9x^2-y^2\)
\(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right).\dfrac{1}{2}=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}z\right).2.\dfrac{1}{2}=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)
\(\left(5y-3x\right).\dfrac{1}{4}\left(12x+20y\right)=\left(5y-3x\right)\left(5y+3x\right).4.\dfrac{1}{4}=25y^2-9x^2\)
\(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(x+\dfrac{3}{2}y\right)=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)=\dfrac{9}{4}y^2-x^2\)
\(\left(a+b+c\right)\left(a+b+c\right)=\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\left(x-y+z\right)\left(x+y-z\right)=x^2-\left(y-z\right)^2=x^2-y^2-z^2+2yz\)
a: \(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\left(3x-y\right)\cdot\left(3x+y\right)=9x^2-y^2\)
b: \(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right)\cdot\dfrac{1}{2}\)
\(=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right)\)
\(=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)
c: \(\left(5y-3x\right)\cdot\dfrac{1}{4}\cdot\left(12x+20y\right)\)
\(=\left(5y-3x\right)\left(5y+3x\right)\)
\(=25y^2-9x^2\)
d: \(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(\dfrac{3}{2}y+x\right)\cdot2\)
\(=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)\)
\(=\dfrac{9}{4}y^2-x^2\)
e: \(\left(a+b+c\right)\left(a+b-c\right)\)
\(=\left(a+b\right)^2-c^2\)
\(=a^2+2ab+b^2-c^2\)