Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Hương Giang
Xem chi tiết
shitbo
29 tháng 1 2019 lúc 19:52

Sửa đề:

A=/x+5/+10

Ta có: /x+5/>= 0 với mọi x>=0

=> A=/x+5/+10 >= 10

=> Amin=10. Dấu "=" xảy ra <=> x+5=0<=> x=-5

Vậy...

Trần Tiến Pro ✓
29 tháng 1 2019 lúc 20:06

\(\text{a) }A=\left|x+5\right|+10\)

\(\text{Vì }\left|x+5\right|\ge0\forall x\)

\(\Rightarrow A=\left|x+5\right|+10\ge10\)

\(\text{Dấu ''='' xảy ra khi :}\)

\(\left|x+5\right|=0\)

\(\Rightarrow x=-5\)

\(\text{Vậy Min}_A=10\Leftrightarrow x=-5\)

\(\text{b) }\left|3-x\right|+5\)

\(\text{Vì }\left|3-x\right|\ge0\forall x\)

\(\Rightarrow\left|3-x\right|+5\ge5\)

\(\text{Dấu ''='' xảy ra khi :}\)

\(\left|3-x\right|=0\)

\(\Rightarrow x=3\)

\(\text{Vậy Min}_B=5\Leftrightarrow x=3\)

\(\text{d) }D=\left(x+2\right)^2+15\)

\(\text{Vì ( x + 2 )}^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+15\ge15\)

\(\text{Dấu ''='' xảy ra khi :}\)

\(\left(x+2\right)^2=0\)

\(\Rightarrow x+2=0\)

\(\Rightarrow x=-2\)

Đặng Tú Phương
29 tháng 1 2019 lúc 20:12

\(C=\left|x+1\right|+\left|y+4\right|\)

Ta có +) \(\left|x+1\right|\ge0\).Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

+)\(\left|y+4\right|\ge0\).Dấu "=" xảy ra \(\Leftrightarrow y+4=0\Leftrightarrow y=-4\)

\(\Rightarrow B=\left|x+1\right|+\left|y+2\right|\ge0\)

\(\Rightarrow minB=0\Leftrightarrow\hept{\begin{cases}x=-1\\y=-4\end{cases}}\)

P/s: ko chắc nha 

Hoàng Tử Ánh Trăng
Xem chi tiết
kudo shinichi
3 tháng 7 2018 lúc 20:15

Bài 1:

a) \(A=\left(x-2\right)^2-1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)

\(A=-1\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy \(A_{min}=-1\Leftrightarrow x=2\)

b) \(B=\left(x^2-9\right)^2+\left|y-2\right|+10\)

Ta có: \(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\forall x;y}\)

\(B=10\Leftrightarrow\hept{\begin{cases}\left(x^2-9\right)^2=0\\\left|y-2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}}\)

Vậy \(B_{min}=10\Leftrightarrow x=\pm3;y=2\)

Bài 2: \(C=\frac{3}{\left(x-2\right)^2}+5\)

Ta có:  \(\frac{3}{\left(x-2\right)^2}\ge0\forall x\)

\(\Rightarrow\frac{3}{\left(x-2\right)^2}+5\ge5\forall x\)

\(\Rightarrow\) C không có giá trị lớn nhất

Vậy C không có giá trị lớn nhất

d) \(D=-10-\left(x-3\right)^2-\left|y-5\right|\)

Ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x-3\right)^2\le0\forall x\\-\left|y-5\right|\le0\forall y\end{cases}}\Rightarrow-\left(x-3\right)^2-\left|y-5\right|-10\ge-10\forall x;y\)

\(D=-10\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left|y-5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}}\)

Vậy \(D_{m\text{ax}}=-10\Leftrightarrow x=3;y=5\)

Nguyễn Hưng Phát
3 tháng 7 2018 lúc 19:54

B1:a,\(\left(x-2\right)^2-1\ge0-1=-1\)

\(\Rightarrow\)GTNN của A là -1 đạt được khi x=2

b,\(\left(x^2-9\right)^2+\left|y-2\right|+10\ge0+0+10=10\)

\(\Rightarrow\)GTNN của B là 10 khi \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)

B2:

a,\(\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{0+5}=\frac{3}{5}\)

\(\Rightarrow\)GTLN của C là \(\frac{3}{5}\) đạt được khi x=2

b,\(-10-\left(x-3\right)^2-\left|y-5\right|\le-10-0-0=-10\)

\(\Rightarrow\)GTLN của D là -10 đạt được khi \(\hept{\begin{cases}x=3\\y=5\end{cases}}\)

Thanh Hằng Nguyễn
3 tháng 7 2018 lúc 20:01

a/ Với mọi x ta có :

\(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow\left(x-2\right)^2-1\ge-1\)

\(\Leftrightarrow A\ge-1\)

Dấu :"=" xảy ra khi : \(\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy ...

b/  tương tự

c/ Để C lớn nhất thì :

\(\left(x-2\right)^2+5\) nhỏ nhất

Với mọi x ta có :

\(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow\left(x-2\right)^2+5\ge5\)

Dấu bằng xảy ra khi : \(\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy ...

Hoàng Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 13:53

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

❤️ buồn ❤️
Xem chi tiết
Phạm Hải An
Xem chi tiết
Alexandra Alice
Xem chi tiết
nghiem nguyenthe
Xem chi tiết
Hoàng Thanh Huyền
25 tháng 1 2020 lúc 9:10

1)a Ta có: \(A=\left|x+19\right|+\left|y-5\right|+1890\)

\(\hept{\begin{cases}\left|x+19\right|\ge0\\\left|y-5\right|\ge0\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890}\)

Vậy giá trị A nhỏ nhất = 1890 <=> x=-19; y= 5

2) a.   \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=2019\)

           \(\left(1+3+5+...+99\right)+\left(x+x+x+...+x\right)=2019\)

Rồi bn tính tổng của dãy số cách đều nha. Công thức: (Số cuối+ Số đầu). Số số hạng: 2 

3) Ta có: \(A^2=b\left(a-c\right)-c\left(a-b\right)\)

              \(A^2=ab-bc-ac+bc\)

             \(A^2=\left(-bc+bc\right)+\left(ab-ac\right)\)

            \(A^2=0+a\left(b-c\right)\)

           \(A^2=-20.\left(-5\right)=100\)

      \(\Rightarrow A=10\)

Chúc bạn năm mới vui vẻ nha! Happy new year !

                                                                                                       

Khách vãng lai đã xóa
Nguyễn Lâm Bằng
Xem chi tiết
Phươngg Anhh
Xem chi tiết
Toan Phạm
Xem chi tiết