Tinh gia tri cua bieu thuc A=x-2009/2009x+y
Biet x^2-2y^2=xy( voi 2009x+y khac 0 )
tinh gia tri bieu thuc sau: x^3+xy^2-x^2y-y^3+3 biet x-y=0
Tim gia tri nho nhat cua bieu thuc :
f(x,y)=\(\dfrac{3x^2+2y^2}{2005xy}\) voi xy \(\ne\) 0
cho bieu thuc A=[x+2/x^2-x+x-2/x^2+x].x^2-1/x^2+2
a) tim dieu kien cua x de gia tri cua bieu thuc A duoc xac dinh
b) tinh gia tri cua bieu thuc A voi x = -200
a) \(A=\left[\dfrac{x+2}{x^2-x}+\dfrac{x-2}{x^2+x}\right].\dfrac{x^2-1}{x^2-x}\)
\(A=\left[\dfrac{x+2}{x\left(x-1\right)}+\dfrac{x-2}{x\left(x+1\right)}\right].\dfrac{x^2-1}{x^2+2}\)
\(A=\left[\dfrac{\left(x+2\right)\left(x+1\right)+\left(x-2\right)\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\right].\dfrac{x^2-1}{x^2+2}\)
\(A=\left[\dfrac{x^2+2x+x+2+x^2-2x-x+2}{x\left(x-1\right)\left(x+1\right)}\right].\dfrac{x^2-1}{x^2+2}\)
\(A=\dfrac{2x^2+4}{x\left(x^2-1\right)}.\dfrac{x^2-1}{x^2+2}\)
\(A=\dfrac{2\left(x^2+2\right)\left(x^2-1\right)}{x\left(x^2-1\right)\left(x^2+2\right)}=\dfrac{2}{x}\)
b) Thay \(x=-200\) vào biểu thức \(A=\dfrac{2}{x}\) ta được :
\(A=\dfrac{2}{x}=\dfrac{2}{-200}=\dfrac{-2}{200}=\dfrac{-1}{100}\)
Cho x2-2y2=xy. Tinh gia tri cua bieu thuc M=\(\frac{x-y}{x+y}\)
Đkxđ : \(x+y\ne0\)
\(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\)
\(\Rightarrow\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)
\(\Rightarrow x-y=y\)
\(\Rightarrow x=2y\)
Thay x = 2y vào M có :
\(M=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Vậy ...
Chung minh bieu thuc Q=(x^4*y^n+1-1/2*x^3*y^n+2):1/2x^3*y^n-20x^4*y:5*xy^2 (n thuoc N) luon <0 voi moi gia tri x khac 0,y khac 0
cho x+y =1 . tinh gia tri cua bieu thuc A=x^3+y^3+3xy
chox-y=1. tinh gia tri cua bieu thuc B=x^3-y^3-3xy
cho x+y=1 . tinh gia tri cua bieu thuc C=x^3+y^3+3xy(x^2+y^2)+6x^2*y^2(x+y)
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
Cho x,y,z khac o va x-y-z=0.Tinh gia tri cua bieu thuc A=(1-z/x)(1-x/y)(1+y/Z)
tinh gia tri bieu thuc:
a,3x^4+5x^2y^2+2y^4+2y^2 biet rang x^2+y^2=1
b,x^3+xy^2-x^2y-y^3+3 biet x-y=0
b, Ta co: \(x^3+xy^2-x^2y-y^3+3\)
\(=\left(x^3-y^3\right)+\left(xy^2-x^2y\right)+3\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)-xy\left(x-y\right)+3\)
= 3 ( vì x-y = 0)
bai 1 tinh gia tri cua bieu thuc 78 x m + 22 x m voi m =135
bai 2 tinh gia tri cua bieu thuc 78 x m + 42 x m -20 x m voi m =1035
bai 3 cho bieu thuc B = 119 x n - n x 9 bieu thuc B co gia tri bang 8470 khi n =............