Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dat
Xem chi tiết
Akai Haruma
7 tháng 9 lúc 18:45

Lời giải:
a. 

$\frac{a}{b}<1\Rightarrow a< b\Rightarrow a-b<0$

Xét hiệu $\frac{a}{b}-\frac{a+m}{b+m}=\frac{am-bm}{b(b+m)}=\frac{m(a-b)}{b(b+m)}<0$ do $a-b<0$ và $a,b,m$ là số tự nhiên $>0$

$\Rightarrow \frac{a}{b}<\frac{a+m}{b+m}$

b.

$\frac{a}{b}>1\Rightarrow a> b\Rightarrow a-b>0$

Xét hiệu $\frac{a}{b}-\frac{a+m}{b+m}=\frac{am-bm}{b(b+m)}=\frac{m(a-b)}{b(b+m)}>0$ do $a-b>0$ và $a,b,m$ là số tự nhiên $>0$

$\Rightarrow \frac{a}{b}>\frac{a+m}{b+m}$

Lương Thế Quyền
Xem chi tiết
Hoàng Đình Nguyên
Xem chi tiết
Trịnh Linh
Xem chi tiết
Nguyen Trang Mai Quyen
Xem chi tiết
soyeon_Tiểu bàng giải
10 tháng 8 2016 lúc 11:04

Do a/b > 1 => a > b

=> a.n > b.n

=> a.n + a.b > b.n + a.b

=> a.(b + n) > b.(a + n)

=> a/b > a+n/b+n ( đpcm)

Kẻ Dối_Trá
9 tháng 8 2016 lúc 16:08

Nguyen Trang Mai Quyen

Đỗ Minh Triết
Xem chi tiết
andy
14 tháng 6 2017 lúc 23:06

b1 

a sai

b sai

c sai

d sai

Đỗ Khánh Ly
Xem chi tiết
soyeon_Tiểu bàng giải
21 tháng 7 2016 lúc 21:48

a) Vì a > b

=> a.n > b.n

=> a.n + a.b > b.n + a.b

=> a.(b + n) > b.(a + n)

=> a/b > a+n/b+n ( đpcm)

Câu b và c lm tương tự

phan thị thùy trang
Xem chi tiết
Minh Hiếu
8 tháng 9 2021 lúc 10:02

a) Ta có:  a<b

                =>a.n<b.n

               =>a.n+a.b< b.n +a.b

               =>a(b+n)<b(a+n)

               =>a/b<a+n/b+n

Vậy nếu a<b thì a/b <a+n / b+n

  b) Ta có :  a>b

=>a.n>b.n

=>a.n+a.b>b.n+a.b

=>a(b+n)>b(a+n)

=>a/b>a+n/b+n

   Vậy a>b thì a/b> a+n/b+n

  c) Ta có : a=b

=>a.n=b.n

=>a.n+ a.b =b.n+a.b

=>a(b+n)=b(a+n)

=>a/b=a+n/b+n

  Vậy a= b thì a/b =a+n/b+n

Trung Nguyen
Xem chi tiết
Anh2Kar六
9 tháng 2 2018 lúc 22:32

b)

đặt A= 1+2^1+2^2+.....+2^(n-1) (1) (điều kiện: n là hợp số) 
=>2A =2.[1+2^1+2^2+.....+2^(n-1)] 
=>2A=2^1+2^2+.....+2^(n-1) +2^n (2) 
lấy (2) - (1) vế theo vế ta có: 
2A-A= 2^n -1 
=> A= 2^n -1 
=> 2^n -1 = 1+2^1+2^2+.....+2^(n-1) 
vì n là hợp số =>n=a.b ( a,b thuộc N ; a >1; b>1) 
=> 1+2^1+2^2+.....+2^(n-1) =1+2^1+2^2+.....+2^(a.b-1) 
trong tổng 1+2^1+2^2+.....+2^(a.b-1) có (a.b-1-0) :1+1 =a.b số hạng 
=> tổng 1+2^1+2^2+.....+2^(a.b-1) có thể chia thành b nhóm ; hoặc a nhóm 
=>1+2^1+2^2+.....+2^(a.b-1) chia hết cho a và chia hết cho b mà a,b thuộc N ; a >1; b>1 
=>1+2^1+2^2+.....+2^(a.b-1) là hợp số => 2^n - 1 cũng là hợp số