Cho O là một điểm nằm trong tam giác ABC. Chứng minhrằng
\(\frac{A+B+C}{2}< OA+OB+OC< A+B=C\)
Cho điểm O nằm trong tam giác ABC. Các tia AO, BO, CO cắt các cạnh của tam giác ABC lần lượt tại A', B', C'.
a) Chứng minh: \(\frac{OA'}{AA'} + \frac{OB'}{BB'} + \frac{OC'}{CC'} = 1.\)
b) Cho M=\(\frac{OA}{OA'} + \frac{OB}{OB'} + \frac{OC}{OC'}\) . Tìm GTNN của M
Cho tam giác ABC có AB = BC = AC. Gọi O là một điểm bất kỳ nằm trong tam giác sao cho OA = OB = OC. Chứng minh rằng O là giao điểm 3 tia phân giác của các góc A; B; C.
Vì OA=OB=OC
nên O là tâm đường tròn ngoại tiếp ΔABC
mà ΔABC đều
nên O là giao điểm của ba tia phân giác của các góc A,B,C
Cho tam giác ABC có 3 cạnh bằng nhau. O là một điểm trong tam giác sao cho OA = OB = OC. Chứng minh rằng O là giao 3 tia phân giác các góc A, B, C của tam giác. (tức là OA là phân giác góc A, OB là phân giác góc B, OC là phân giác góc C)
Ta có AB=AC (GT), AO chung, OB=OC (GT) suy ra tam giác ABO=tam giác ACO (c.c.c)
suy ra góc BAO=góc CAO
mà O là điểm nằm trong tam giác ABC nên tia AO nằm giữa hai tia AB và AC
suy ra AO là tia phân giác của góc BAC (1)
chứng minh tương tự BO là tia phân giác của góc ABC (2)
CO là tia phân giác của góc ACB (3)
Từ(1), (2), (3) suy ra điều phải chứng minh
Cho tam giác ABC . gọi O là một điểm nằm trong tam giác đó . Vẽ OA,OB,OC cắt BC,AC,AB lần luotj tai A' , B' , C' .
Chứng minh rằng :\(\frac{OA'}{AA'}+\frac{OB'}{BB'}+\frac{OC'}{CC'}=1\)
CÁC BẠN GIÚP MÌNH NHANH NHA , MAI PHẢI NỘP RỒI . THANK YOU :)
Cho tam giác ABC, điểm O nằm trong tam giác, tia BO cắt cạnh AC tại I. a) So sánh OA và IA + IO, từ đó suy ra OA + OB < IA + IB; b) Chứng minh: OA + OB < CA + CB; c) Chứng minh: (AB+AC+BC) /2 < OA + OB + OC < AB + BC + CA
Cho tam giác ABC điểm O nằm trong tam giác, tia BO cắt cạnh AC tại I
a) So sánh OA và IA + IO, từ đó suy ra OA + OB < IA + IB;
b) Chứng minh OA + OB < CA + CB.
c) Chứng minh A B + B C + C A 2 < O A + O B + O C < A B + B C + C A
Cho tam giác ABC vuông tại A có AC = 5cm, BC = 13cm.
a) Tính độ dài cạnh AB.
b) Gọi O là điểm nằm trong cùng một nửa mặt phẳng chứa A, B, C sao cho OA = OB = OC.
Chứng minh O là giao điểm của ba đường trung trực của tam giác ABC.
c) Tính khoảng cách từ trọng tâm G của tam giác ABC đến điểm O.
a) Tam giác ABC vuông tại A => AB2=BC2-AC2 => AB2=132-52 <=> AB2=169-25=144 => AC=12
b) Giao điểm của 3 đường trung trực trong tam giác cách đều 3 đỉnh của tam giác đó. Mà OA=OB=OC
=> O là giao điểm của 3 đường trung trực trong tam gaics ABC.
c) Tam giác ABC vuông tại A => Giao của 3 đường trung trực trong tam giác ABC nằm trên cạnh BC
Mà OB=OC => Trung điểm của BC trùng với điểm O => AO là trung tuyến của tam giác ABC.
G là trọng tâm => GO=1/3AO=1/3BO=1/3CO. BO=CO=1/2BC =>BO=CO=13/2=6,5 (cm)
=> GO=1/3.6,5\(\approx\)2,1 (cm)
Mình làm câu a
Ta có tam giác ABC vuông tại A
Áp dụng định lý PITAGO ta có :
AC^2 = BC^2 - AB^2 = 13^2 - 5^2 = 144 = 12^2
Suy ra AC = 12 ( cm )
Vậy AC = 12 cm
cho điểm O thuộc miền tam giác ABC. các tia OA,OB,OC cắt các cạnh của tam giác ABC lần lượt tại A',B',C'. chứng minh rằng
a) \(\frac{OA'}{AA'}+\frac{OB'}{BB'}+\frac{OC'}{CC'}=1\)
kẻ đường cao AH có: \(\frac{OA'}{AA'}=\frac{S_{BOC}}{S_{ABC}}\), ta có:
\(\frac{OB'}{BB'}=\frac{S_{AOC}}{S_{ABC}}\)
\(\frac{OC'}{CC'}=\frac{S_{AOB}}{S_{ABC}}\)
\(\Rightarrow\frac{OA'}{AA'}+\frac{OB'}{BB'}+\frac{OC'}{CC'}=\frac{S_{BOC}+S_{AOC}+S_{AOB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\) (đpcm)
Nguồn: HiệU NguyễN