Cho tam giác ABC nhọn kẻ đường cao AH
Chứng minh diện tích ABC=1/2 AB.AC sin C
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O,bán kính:R.Đường cao AD,BE,CF đồng quy tại H 1. Chứng minh B,C,E,F cùng thuộc 1 đường tròn 2. AB.AC=2R.AD và diện tích tam giác ABC= AB.AC.BC/4R 3. Gọi M là trung điểm của BC.Chứng minh AH=2.OM 4. Gọi G là trọng tâm của tam giác ABC.Chứng minh H,G,O thẳng hàng và HG=2.GO
Cho tam giác ABC nhọn, nội tiếp đường tròn (O). Các đường cao AD; BE; CF của tam giác
ABC cùng đi qua trực tâm H.
1) Chứng minh tứ giác BFEC nội tiếp;
2) Kẻ đường kính AK của đường tròn (O). Chứng minh tam giác ABD đồng dạng với tam giác
AKC và AB.AC = 2. AD. R;
3) Gọi M là hình chiếu vuông góc của C trên AK. Chứng minh rằng MD song song với BK.
4) Giả sử BC là dây cố định của đường tròn (O) còn A di động trên cung lớn BC. Tìm vị trí
điểm A để diện tích tam giác AEH lớn nhất.
a: AC=căn 10^2-6^2=8cm
BD là phân giác
=>DA/AB=DC/BC
=>DA/3=DC/5=8/8=1
=>DA=3cm; DC=5cm
b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
=>AB/HA=BC/AC
=>AB*AC=AH*BC
c: S HAC=1/2*HA*HC=1/2*4,8*6,4=15,36cm2
Cho tam giác ABC có đường cao BH góc A = anpha . CHứng minh rằng
a, Nếu góc anpha < 90 độ thì diện tích ABC = \(\frac{1}{2}AB.AC.\) sin anpha
b, Nếu góc anpha > 90 độ thì diện tích ABC = \(\frac{1}{2}AB.AC\) . (180 độ - anpha)
Cho tam giác nhọn ABC 2 đường cao BD và CE. CMR
a) diện tích tam giác ADE= diện tích tam giác ABC . Cos^2 góc A
b) diện tích tứ giác BCDE = diện tích tam giác ABC . Sin góc A
Gọi AH và AK lần lượt là 2 đường cao của \(\Delta ADE\)và \(\Delta ABC\)
Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^o\)nên tứ giác BCDE nội tiếp
\(\Rightarrow\widehat{AED}=\widehat{ACB}\)( cùng bù với \(\widehat{BED}\))
\(\Rightarrow\Delta ADE\approx\Delta ABC\left(g.g\right)\) ( nếu chưa học tứ giác nội tiếp thì có thể xét các tam giác đồng dạng để c.m nha )
\(\Rightarrow\frac{AD}{AB}=\frac{DE}{BC}=\frac{AH}{AK}\) ( vì tỉ số đồng dạng bằng tỉ số đường cao )
a) Ta có : \(\frac{S_{ADE}}{S_{ABC}}=\frac{\frac{DE.AH}{2}}{\frac{BC.AK}{2}}=\frac{AD}{AB}.\frac{AH}{AK}=\left(\frac{AD}{AB}\right)^2\)
Mà \(\cos A=\frac{AD}{AB}\Rightarrow\cos^2=\left(\frac{AD}{AB}\right)^2\)\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\cos^2A\)
\(\Rightarrow S_{ADE}=S_{ABC}.\cos^2A\)
b) \(S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}.\left(1-\cos^2A\right)=S_{ABC}.\sin^2A\)( vì \(\cos^2A+\sin^2A=1\))
Cho tam giác ABC nhọn (AB < AC) đường cao AH. Kẻ HM L AB tại M, HN L AC tại N. 1) Chứng minh : tam giác AMN đồng dạng với tam giác ACB. 2) Chứng minh : S AHN =sin^2 B.sin^2 C .S ABC Giúp mình với ạ
1: ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét ΔAMN và ΔACB có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
\(\widehat{MAN}\) chung
Do đó: ΔAMN đồng dạng vớiΔACB
Cho tam giác ABC nội tiếp đường tròn tâm O, đường cao AH. Kẻ đường kính AD.
a) Chứng minh rằng: AB.AC=AH.AD
b) Gọi S là diện tích của tam giác ABC, R là bán kính đường tròn ngoại tiếp tam giác ABC. AB= c, AC=b, BC=a. Chưngs minh rằng: S=
abc/4R
cho tam giác ABC có 3 góc nhọn, kẻ đường cao AH. Chứng minh sin A + cos A > 1