Cho tam giác ABC nhọn, nội tiếp đường tròn (O). Các đường cao AD; BE; CF của tam giác
ABC cùng đi qua trực tâm H.
1) Chứng minh tứ giác BFEC nội tiếp;
2) Kẻ đường kính AK của đường tròn (O). Chứng minh tam giác ABD đồng dạng với tam giác
AKC và AB.AC = 2. AD. R;
3) Gọi M là hình chiếu vuông góc của C trên AK. Chứng minh rằng MD song song với BK.
4) Giả sử BC là dây cố định của đường tròn (O) còn A di động trên cung lớn BC. Tìm vị trí
điểm A để diện tích tam giác AEH lớn nhất.
Cho tam giác nhọn ABC 2 đường cao BD và CE. CMR
a) diện tích tam giác ADE= diện tích tam giác ABC . Cos^2 góc A
b) diện tích tứ giác BCDE = diện tích tam giác ABC . Sin góc A
Cho tam giác ABC nội tiếp đường tròn tâm O, đường cao AH. Kẻ đường kính AD.
a) Chứng minh rằng: AB.AC=AH.AD
b) Gọi S là diện tích của tam giác ABC, R là bán kính đường tròn ngoại tiếp tam giác ABC. AB= c, AC=b, BC=a. Chưngs minh rằng: S=
abc/4R
cho tam giác ABC có 3 góc nhọn, kẻ đường cao AH. Chứng minh sin A + cos A > 1
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O,R), (AB<AC). Ba đường cao AE,BF,CK của tam giác ABC cắt nhau tại H. Vẽ đường kính AD của đường tròn (O,R)
a) Chứng minh: Tứ giác AKHF nội tiếp
b) Chứng minh DC//BF
c) Chứng minh: AB.AC=AE.AD
d) Cho BC=\(\frac{4\sqrt{2}R}{3}\). Tính theo R diện tích hình tròn ngoại tiếp tam giác HKF
Cho tam giác ABC nhọn. Kẻ các đường cao BE, CF giao nhau tại H.
a) Chứng minh: AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC.
b) Qua B kẻ đường thẳng song song với CF cắt tia AH tại M. Ah cắt BC tại D. Chứng minh: BD^2=AD.DM.
c) Cho góc ACB = 45 độ và kẻ AK vuông góc EF tại K. Tính tỉ số giữa S AFH/ S AKE.
d) Chứng minh: AB.AC = BE.CF + AE. AF
Cho tam giác ABC nhọn, kẻ các đường cao AH, BI, CK. Chứng minhn rằng:
a) \(S_{ABC}=\frac{1}{2}AB.AC.\sin A\)
b) \(S_{HIK}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
Các bạn giải nhanh giúp mình nha cầu xin các bạn đấy :(((