Cho tam giác ABC nhọn, nội tiếp đường tròn (O). Các đường cao AD; BE; CF của tam giác
ABC cùng đi qua trực tâm H.
1) Chứng minh tứ giác BFEC nội tiếp;
2) Kẻ đường kính AK của đường tròn (O). Chứng minh tam giác ABD đồng dạng với tam giác
AKC và AB.AC = 2. AD. R;
3) Gọi M là hình chiếu vuông góc của C trên AK. Chứng minh rằng MD song song với BK.
4) Giả sử BC là dây cố định của đường tròn (O) còn A di động trên cung lớn BC. Tìm vị trí
điểm A để diện tích tam giác AEH lớn nhất.