Tìm cặp số (x,y) thỏa mãn pt \(3x^2-6x+y-2=0\) sao cho y đạt giá trị lớn nhất.
tìm cặp số ( x ; y ) thỏa mãn pt : x2 + y2 + 6x - 3y - 2xy + 7 =0 sao cho y đạt giá trị lớn nhất.
x2+y2+6x-3x-2xy+7=0
\(\Leftrightarrow x^2+2\left(3-y\right)x+y^2-3y+7=0\)
Coi đây là pt bật 2 ẩn x ta có
\(\Delta'=\left(3-y\right)^2-y^2+3y-7\)
\(=y^2-6y+9-y^2+3y-7\)
\(=2-3y\)
Để pt có nghiệm \(\Leftrightarrow\Delta'\le0\)
\(\Rightarrow2-3y\le0\Leftrightarrow y\le\frac{2}{3}\)
y lớn nhất \(\Rightarrow y=\frac{2}{3}\)
thay vào tính tiếp
Tìm các cặp số nguyên \(\left(x;y\right)\) thỏa mãn \(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\) sao cho tích \(xy\) đạt giá trị lớn nhất.
\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}=4\left(1\right)\)
Theo Bất đẳng thức Cauchy cho các cặp số \(\left(x^2;\dfrac{1}{x^2}\right);\left(x^2;\dfrac{y^2}{4}\right)\)
\(\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge2.\dfrac{1}{2}xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge xy\end{matrix}\right.\)
Từ \(\left(1\right)\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}\ge2+xy\)
\(\Leftrightarrow4\ge2+xy\)
\(\Leftrightarrow xy\le2\left(x;y\inℤ\right)\)
\(\Leftrightarrow Max\left(xy\right)=2\)
Dấu "=" xảy ra khi
\(xy\in\left\{-1;1;-2;2\right\}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-2\right);\left(1;2\right);\left(-2;-1\right);\left(2;1\right)\right\}\) thỏa mãn đề bài
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Tìm x, y thỏa mãn phương trình \(x^2-x^2y-y+8x+7=0\) sao cho y đạt giá trị lớn nhất.
Lời giải:
$x^2-x^2y-y+8x+7=0$
$\Leftrightarrow x^2+8x+7=y(x^2+1)$
$\Leftrightarrow y=\frac{x^2+8x+7}{x^2+1}$
$\Leftrightarrow y=\frac{(x^2+1)+8x+6}{x^2+1}=1+\frac{8x+6}{x^2+1}$
Áp dụng bđt AM-GM ta có:
$x^2+\frac{1}{4}\geq |x|\geq x$
$\Rightarrow x^2+1\geq x+\frac{3}{4}=\frac{4x+3}{4}$
$\Rightarrow \frac{8x+6}{x^2+1}\leq \frac{2(4x+3)}{\frac{4x+3}{4}}=8$
$\Rightarrow y\leq 1+8=9$
Vậy $y_{\max}=9$
$x^2=\frac{1}{4}$; $x\geq 0\Rightarrow x=\frac{1}{2}$
pt\(\Leftrightarrow x^2\left(1-y\right)+8x+7-y=0\) (1)
Ta có :\(\Delta\)(x)=\(-y^2+8y+9\)(do làm biếng nên làm ra denta luôn)
Để tồn tại MAX y thì PT (1) có ngiệm nên \(\Delta\ge0\) \(\Leftrightarrow-y^2+8y+9\ge0\)
\(\Leftrightarrow-y^2-y+9y+9\ge0\Leftrightarrow-y\left(y+1\right)+9\left(y+1\right)\ge0\)
\(\Leftrightarrow\left(y+1\right)\left(9-y\right)\ge0\)
Giải BPT ta được : \(-1\le y\le9\)
\(\Rightarrow\) Max y =9. Thay y=9 vào (1)\(\Rightarrow x=\dfrac{1}{2}\)
Vậy Max y=9\(\Leftrightarrow x=\dfrac{1}{2}\)
Cặp số (x0;y0) thỏa mãn 3x2 - 6x +y-2 =0 sao cho y0 lớn nhất. Khi đó x0 + y0 = ????
Cho x,y là hai số thực thỏa mãn:\(x^2+y^2-6x+5=0\).Tìm giá trị lớn nhất của P=x2 + y2 đạt tại x là ?
\(\Rightarrow\left(x-3\right)^2-4+y^2=0\)
x=3
y=2
P=13
x^2+y^2-6x+5=0
<=>x^2-6x+9+y^2-4=0
<=> (x-3)^2+(y^2-4)=0
<=> (x-3)^2=0 hoặc y^2-4=0
<=> x=3 và y=-2;2
ta có P=x^2+y^2=3^2+2^2=13>=13
Max P=13 <=> x=3;y=-2;2
Tìm các cặp số nguyên (x;y) thoả mãn 2x^2+1/x^2+y^2/4=4 sao cho tích x.y đạt giá trị lớn nhất
Cho x;y là 2 số thực thỏa mãn x2+y2-6x+5=0. Giá trị lớn nhất của P=x2+y2 đạt tại x=...
TÌm các số nguyên x,y thỏa mãn : 2x^2+1/x^2 +y^2/4 =4 sao cho tích x,y đạt giá trị lớn nhất
\(\text{Ta có : }2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)
\(\Leftrightarrow\left(x^2+2+\frac{1}{x^2}\right)+\left(x^2-xy+\frac{y^2}{4}\right)=2-xy\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2=2-xy\)
\(\text{ Lại có : }\left(x+\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2\ge0\)
\(\Rightarrow2-xy\ge0\)
\(\Rightarrow xy\le2\)
Mà xy có giá trị lớn nhất
\(\Rightarrow xy\in\left\{\left(1;2\right)\left(2;1\right)\left(-1;-2\right)\left(-2;-1\right)\right\}\)