Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mr.Zoom
Xem chi tiết
Ngô Bá Hùng
25 tháng 7 2019 lúc 18:09
https://i.imgur.com/jWx3LMv.jpg
Nguyễn Thị Minh Ngọc
Xem chi tiết
pham hong thai
Xem chi tiết
Orochimaru
Xem chi tiết
lo ngoc linh
7 tháng 3 2017 lúc 21:16

10A=\(\frac{10^{20}+10}{10^{20}+1}\)=\(\frac{10^{20}+1+9}{10^{20}+1}\)=\(1\)+\(\frac{9}{10^{20}+1}\)

10B=\(\frac{10^{21}+10}{10^{21}+1}\)=\(\frac{10^{21}+1+9}{10^{21}+1}\)=\(1\)+\(\frac{9}{10^{21}+1}\)

Vì \(\frac{9}{10^{20}+1}\)>\(\frac{9}{10^{21}+1}\)nên 10A>10B\(\Rightarrow\)A>B

Phạm Thị Hằng
Xem chi tiết
soyeon_Tiểubàng giải
24 tháng 10 2016 lúc 21:38

Áp dụng \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\) (a;b;c \(\in\) N*)

Ta có:

\(B=\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}\)

\(B< \frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)

=> A > B

tuyên lương
Xem chi tiết
hahungdauden
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết
Trần Thị Xuân
8 tháng 11 2017 lúc 10:05

\(B=\frac{10^{20}+1}{10^{21}+1}< 1\)

NÊN \(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)

VẬY B<A

Nguyen Thi Thu Huong
Xem chi tiết
Minh Triều
28 tháng 5 2015 lúc 22:10

Ta có a/b >1 => a/b > a+n/b+n(a, b,n \(\in\) N*)               

B = 2010-1/2010-3 > 1 nên B = 2010-1/2010-3 > 2010-1+2/2010-3+2  

   = 2010+1/ 2010-1 = A

Vậy B > A