Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vi lê
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2021 lúc 17:41

Tứ giác ABMC nội tiếp \(\Rightarrow\widehat{ABM}+\widehat{ACM}=180^0\)

Mà \(\widehat{ACM}+\widehat{MCE}=180^0\Rightarrow\widehat{ABM}=\widehat{MCE}\)

D và E cùng nhìn CM dưới 1 góc vuông \(\Rightarrow CDME\) nội tiếp

\(\Rightarrow\widehat{MCE}=\widehat{MDE}\) (cùng chắn ME) \(\Rightarrow\widehat{ABM}=\widehat{MDE}\)

Mặt khác D và F cùng nhìn BM dưới 1 góc vuông \(\Rightarrow BFDM\) nội tiếp

\(\Rightarrow\widehat{ABM}+\widehat{FDM}=180^0\)

\(\Rightarrow\widehat{MDE}+\widehat{FDM}=180^0\Rightarrow\) D, E, F thẳng hàng

Nguyễn Việt Lâm
21 tháng 1 2021 lúc 17:41

Hình vẽ:

undefined

Nguyen Hoang Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2023 lúc 7:53

a: góc EMC+góc EFC=180 độ

=>EMFC nội tiếp

góc MDB=góc MEB=90 độ

=>MEDB nội tiếp

=>góc DBM=góc DEM

b: góc DEF=góc DEM+góc FEM

=180 độ-góc ABM+góc FCM

=180 độ

=>D,F,E thẳng hàng

 

Nhất
Xem chi tiết
Thanh Tùng DZ
19 tháng 2 2020 lúc 15:18

A B C M D E F O

Xét \(\Delta ABC\)nội tiếp đường tròn ( O ), M là điểm bất kì thuộc đường tròn, \(MD\perp BC;MF\perp AB;ME\perp AC\)

Tứ giác MDEC có \(\widehat{MEC}=\widehat{MDC}=90^o\) nên là tứ giác nội tiếp

\(\Rightarrow\widehat{MDE}+\widehat{MCE}=180^o\) ( 1 )

Tứ giác ABMC là tứ giác nội nên \(\widehat{MCA}=\widehat{MBF}\)( cùng bù với \(\widehat{ABM}\))  ( 2 )

Tứ giác MDBF có \(\widehat{BDM}+\widehat{BFM}=180^o\)nên là tứ giác nội tiếp suy ra \(\widehat{MBF}=\widehat{FDM}\)( 3 )

Từ ( 1 ) , ( 2 ) và ( 3 ) \(\Rightarrow\widehat{FDM}+\widehat{MDE}=180^o\)hay \(\widehat{FDE}=180^o\)

Vậy 3 điểm D,E,F thẳng hàng

Khách vãng lai đã xóa
Wolf 2k6 has been cursed
Xem chi tiết
An Thy
21 tháng 6 2021 lúc 9:48

a) Ta có: \(\angle MEC=\angle MFC=90\Rightarrow MEFC\) nội tiếp

Ta có: \(\angle BDM+\angle BEM=90+90=180\Rightarrow BDME\) nội tiếp

\(\Rightarrow\angle DBM=\angle DEM\)

b) BDME nội tiếp \(\Rightarrow\angle BED=\angle BMD=90-\angle DBM\)

MEFC nội tiếp \(\Rightarrow\angle FEC=\angle FMC=90-\angle ACM\)

mà \(\angle DBM=\angle ACM\) (ABMC nội tiếp)

\(\Rightarrow\angle BED=\angle FEC\) mà B,E,C thẳng hàng \(\Rightarrow D,E,F\) thẳng hàng

Xét \(\Delta MBD\) và \(\Delta MCF:\) Ta có: \(\left\{{}\begin{matrix}\angle MFC=\angle MDB\\\angle MCA=\angle MBD\end{matrix}\right.\)

\(\Rightarrow\Delta MBD\sim\Delta MCF\left(g-g\right)\Rightarrow\dfrac{MB}{MC}=\dfrac{MD}{MF}\Rightarrow MB.MF=MD.MC\)

c) Kẻ đường cao AH,BI

Ta có: \(\angle ARV=\angle ACB=\angle BVH\left(=90-\angle CBI\right)=\angle AVI\)

\(\Rightarrow\Delta AVR\) cân tại A có \(AC\bot VR\Rightarrow AC\) là trung trực VR

mà F nằm trên AC \(\Rightarrow FV=FR\Rightarrow\Delta FVR\) cân tại F \(\Rightarrow\angle FVR=\angle FRV\)

DF cắt BR tại G

\(\angle GRM=\angle BRM=\angle BCM=\angle ECM=\angle EFM=\angle GFM\)

\(\Rightarrow GRFM\) nội tiếp mà \(MF\parallel GR (\bot AC)\) \(\Rightarrow GRFM\) là hình thang cân

\(\Rightarrow\angle MGR=\angle FRG=\angle FRV=\angle FVR\) \(\Rightarrow VF\parallel GM\)

mà \(MF\parallel GR\) \(\Rightarrow VFMG\) là hình bình hành có GF,VM là các đường chéo nên cắt nhau tại trung điểm mỗi đường 

\(\Rightarrow DF\) đi qua trung điểm VM

undefined

 

Trần Hồng Quân
Xem chi tiết
dang khoi nguyen cuu
Xem chi tiết
Nameofapple
Xem chi tiết
Admin (a@olm.vn)
16 tháng 9 2019 lúc 20:31

Chứng minh:

Xét trường hợp \(\Delta\)ABC nhọn và ^MBC > ^MCA (các trường hợp khác chứng minh tương tự)

Khi đó D thuộc tia đối của tia BA, E và F tương ứng nằm trên cạnh BC, CA.

A B C M D E F

Vì các tứ giác MDBE, ABMC và MCFE nội tiếp nên ^MED = ^MBD = ^ACM = 180o - ^MEM

=> ^MED + ^MEF = 180o <=> ^DEF = 180o.

Vậ D, E, F thẳng hàng (đpcm)

P/s: Bài toán trên theo mình nhớ không lầm thì là đường thẳng sim sơn

DarkEvil HK Huy
Xem chi tiết
Mạnh Lê
3 tháng 5 2018 lúc 17:39

b. Do tứ giác MDBE nội tiếp (cmt) => \(\widehat{MBE}=\widehat{MBC}=\widehat{MDE}=\frac{1}{2}sđ\widebat{MC}\)(1)

Vì MD \(\perp\)AB tại D (gt) => \(\widehat{MDA}=90^o\)

MF \(\perp\)AC tại F (gt) => \(\widehat{MFA}=90^o\)

Xét tứ giác ADMF có: \(\widehat{MDA}+\widehat{MFA}=90^o+90^o=180^o\)=> tứ giác ADMF nội tiếp (dhnb)

=> \(\widehat{MDF}=\widehat{MAF}=\widehat{MAC}=\frac{1}{2}sđ\widebat{MC}\)(2)

Từ (1) và (2) => \(\widehat{MDE}=\widehat{MDF}\)=> D, E, F thẳng hàng (2 góc có cùng số đo, có 1 cạnh chung, 2 cạnh còn lại của 2 góc cùng nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau)

* Ta có: tứ giác MEFC nội tiếp (cmt) => \(\widehat{EFM}=\widehat{ECM}=\frac{1}{2}sđ\widebat{EM}\)\(\Leftrightarrow\widehat{DFM}=\widehat{BCM}\)(3)

tứ giác MDBE nội tiếp (cmt) => \(\widehat{MDE}=\widehat{MBE}=\frac{1}{2}sđ\widebat{ME}\)\(\Leftrightarrow\widehat{MDF}=\widehat{MBC}\)(4)

Từ (3) và (4) => \(\Delta MDF\)đồng dạng với \(\Delta MBC\)(g.g) => \(\frac{MD}{MB}=\frac{MF}{MC}\Leftrightarrow MB\times MF=MD\times MC\)(đpcm)

c. Nối A với M, B với M 

Ta có: \(\widehat{AMB}=\widehat{ACB}=\frac{1}{2}sđ\widebat{AB}\)(5)

Do tứ giác MEFC nội tiếp => \(\widehat{FME}=\widehat{FCE}=\frac{1}{2}sđ\widebat{EF}=\widehat{ACB}=\frac{1}{2}sđ\widebat{AB}\)(6)

Từ (5) và (6) => \(\widehat{AMB}=\widehat{FME}\)(7)

lại có: tứ giác ADMF nội tiếp (cmt) => \(\widehat{MAD}=\widehat{MFD}=\frac{1}{2}sđ\widebat{MD}\Leftrightarrow\widehat{MAB}=\widehat{MFE}\)(8)

từ (7) và (8) => \(\Delta ABM\)đồng dạng với \(\Delta FEM\)(g.g) => \(\frac{AB}{FE}=\frac{AM}{FM}\Leftrightarrow\frac{AB}{AM}=\frac{FE}{FM}\Leftrightarrow\frac{2\times AI}{AM}=\frac{2\times FK}{FM}\Leftrightarrow\frac{AI}{AM}=\frac{FK}{FM}\)(9)

Lại có: \(\widehat{MAD}=\widehat{MFD}\)(CMT) => \(\widehat{MAI}=\widehat{MFK}\)(10)

Từ (9) và (10) => \(\Delta MAI\)đồng dạng với \(\Delta MFK\)(c.g.c) => \(\widehat{IMA}=\widehat{KMF}\)(11)

Ta có: \(\widehat{MID}\)là góc ngoài tại đỉnh I của \(\Delta MAI\)=> \(\widehat{MID}=\widehat{MAI}+\widehat{IMA}\)

Tương tự: \(\widehat{MKD}\)là góc ngoài tại đỉnh K của \(\Delta MFK\)=> \(\widehat{MKD}=\widehat{MFK}+\widehat{KMF}\)

Từ (10) và (11) => \(\widehat{MID}=\widehat{MKD}\)=> Tứ giác MDIK là tứ giác nội tiếp (DHNB) => \(\widehat{IDM}+\widehat{IKM}=180^o\)(Hệ quả)

Mà \(\widehat{IDM}=\widehat{ADM}=90^o\)=> \(\widehat{IKM}=90^o\)<=> MK vuông góc với KI (ĐPCM)

Minh Anh
Xem chi tiết
xa nguyen nhat minh
28 tháng 11 2016 lúc 19:46

xin lỗi mình mới học lớp 4

em mới lớp 6 thôi

nguyen thanh thanh hien
1 tháng 5 2017 lúc 13:04

m chịu