\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
$\frac{4x+3}{5}$ -$\frac{6x-2}{7}$ =$\frac{5x+4}{3}$ +3
b.
$\frac{x+4}{5}$ -x+4=$\frac{x}{3}$ -$\frac{x-2}{2}$
c.$\frac{5x+2}{6}$ -$\frac{8x-1}{3}$ =$\frac{4x+2}{5}$ -5
d.$\frac{2x+3}{3}$ =$\frac{5-4}{2}$
e. $\frac{5x+3}{12}$ =$\frac{1+2x}{9}$
f.$\frac{7x-1}{6}$ =$\frac{16-x}{5}$
g. $\frac{x-3}{5}$ =6-$\frac{1-2x}{3}$
h. $\frac{3x-2}{6}$ -5=$\frac{3-2(x+7)}{4}$
giúp vs ạ, cần gấp
d: =>4x+6=15x-12
=>4x-15x=-12-6=-18
=>-11x=-18
hay x=18/11
e: =>\(45x+27=12+24x\)
=>21x=-15
hay x=-5/7
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7
\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
Giải phương trình.
\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\frac{7\left(4x+3\right)}{35}-\frac{5\left(6x-2\right)}{35}=\frac{5x+4}{3}+\frac{9}{3}\)
\(\Leftrightarrow\frac{28x+21}{35}-\frac{30x-10}{35}=\frac{5x+13}{3}\)
\(\Leftrightarrow\frac{-2x+31}{35}=\frac{5x+13}{3}\)
\(\Leftrightarrow3\left(-2x+31\right)=35\left(5x+13\right)\)
\(\Leftrightarrow-6x+93=175x+455\)
\(\Leftrightarrow-181x=362\)
\(\Leftrightarrow x=-2\)
Vậy phương trình có tập nghiệm \(S=\left\{-2\right\}\)
Giải các phương trình
a) \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\)
b) \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
c) \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
d) \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
Tìm x:\(a,\frac{6x-5}{-7}=\frac{5x-3}{-5}\\ b,\frac{12-7x}{-13}=\frac{4-3x}{-5}\\ c,\frac{2x+4}{7}=\frac{4x-2}{15}\)
a) \(\frac{6x-5}{-7}=\frac{5x-3}{-5}\)
=> -5(6x - 5) = -7(5x - 3)
=> -30x + 25 = -35x + 21
=> -30x + 25 + 35x - 21 = 0
=> (-30x + 35x) + (25 - 21) = 0
=> 5x + 4 = 0
=> 5x = -4
=> x = -4/5
b) \(\frac{12-7x}{-13}=\frac{4-3x}{-5}\)
=> -5(12 - 7x) = -13(4 - 3x)
=> -60 + 35x = -52 + 39x
=> -60 + 35x + 52 - 39x = 0
=> (-60 + 52) + (35x - 39x) = 0
=> -8 - 4x = 0
=> -8 = 4x
=> x = -2
c) \(\frac{2x+4}{7}=\frac{4x-2}{15}\)
=> 15(2x + 4) = 7(4x - 2)
=> 30x + 60 = 28x - 14
=> 30x + 60 - 28x + 14 = 0
=> 2x + 74 = 0
=> 2x = -74
=> x = -37
Giải phương trình sau: \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\frac{4x+3}{5}+1+\frac{2-6x}{7}-2=\frac{5x+4}{3}+2\)
\(\Leftrightarrow\frac{4x+3}{5}+\frac{5}{5}+\frac{2-6x}{7}-\frac{14}{7}=\frac{5x+4}{3}+\frac{6}{3}\)
\(\Leftrightarrow\frac{4x+8}{5}+\frac{-6x-12}{7}=\frac{5x+10}{3}\)
\(\Leftrightarrow\frac{4x+8}{5}+\frac{-6x-12}{7}-\frac{5x+10}{3}=0\)
\(\Leftrightarrow\frac{4.\left(x+2\right)}{5}+\frac{-6.\left(x+2\right)}{7}-\frac{5.\left(x-2\right)}{3}=0\)
\(\Leftrightarrow\left(x+2\right).\left(\frac{4}{5}+\frac{-6}{7}-\frac{5}{3}\right)=0\)
<=>x+2=0 \(\left(\text{vì: }\frac{4}{5}+\frac{-6}{7}-\frac{5}{3}\ne0\right)\)
<=>x=-2
Vậy S={-2}
Bạn quy đồng cho mẫu số giống nhau rồi bắt đầu khử mẫu, tính như bình thường nha.
\(\frac{4x+3}{5}\)-\(\frac{6x-2}{7}\)=\(\frac{5x+4}{3}\)+3
\(\frac{x-3}{3xy}\)+ \(\frac{5x+3}{3xy}\)
\(\frac{5x-7}{2x-3}+\frac{4-3x}{2x-3}\)
\(\frac{3x+5}{7x-1}-\frac{6-4x}{7x-1}\)
\(\frac{11x-7}{3-5x}-\frac{6x+4}{5x-3}\)
\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
\(\frac{1}{2x-10}+\frac{2x}{3x^2-15x}\)
1/ \(\frac{x-3}{3xy}\)+\(\frac{5x+3}{3xy}\)= \(\frac{6x}{3xy}\)=\(\frac{3}{y}\)
2/\(\frac{5x-7}{2x-3}\)+\(\frac{4-3x}{2x-3}\)=\(\frac{2x-3}{2x-3}\)=1
3/\(\frac{11x-7}{3-5x}\)-\(\frac{6x+4}{5x-3}\)=\(\frac{11x-7}{3-5x}\)+\(\frac{6x+4}{3-5x}\)=\(\frac{17x-3}{3-5x}\)
4/\(\frac{3}{2x+6}\)-\(\frac{x-6}{2x^2+6x}\)=\(\frac{3x}{x\left(2x+6\right)}\)-\(\frac{x-6}{x\left(2x+6\right)}\)=\(\frac{2x-6}{x\left(2x+6\right)}\)
5/\(\frac{1}{2x-10}\)+\(\frac{2x}{3x^2-15x}\)=\(\frac{1}{2\left(x-5\right)}\)+\(\frac{2x}{3x\left(x-5\right)}\)=\(\frac{3x}{6x \left(x-5\right)}\)+\(\frac{4x}{6x\left(x-5\right)}\)
=\(\frac{7x}{6x\left(x-5\right)}\)=\(\frac{7}{6\left(x-5\right)}\)
tìm x: \(\frac{4x+3}{5}\)-- \(\frac{6x-2}{7}\)= \(\frac{5x+4}{3}\)+3
Giải PT
1.
a. \(2.\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\)
c. \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
bạn quy đồng mẫu bên trong ngoặc rồi làm tương tự với bên ngoài ở cả 2 vế
sau đó bỏ mẫu đi và giải pt thôi