Cho Δ MNP vuông tại M. Kẻ MK vuông góc NP. Tia phân giác góc PMK cắt NP tại I.
CM:NM=NI
Cho tam giác MNP vuông tại M. Kẻ MK vuông góc với NP ( K thuộc NP ). Tia phân giác của góc PMK cắt NP tại I. Chứng minh NM = NI.
Ta có:
\(\widehat{NMK}=\widehat{MPN}+\widehat{MNK}\left(=90^0\right)\)
Vì MI là tia phân giác \(\widehat{KMP}\)
=> \(\widehat{NMI}=\widehat{NMK}+\widehat{KMI}=\widehat{MPN}+\widehat{IMP}=\widehat{MIN}\)
=> Tam giác NMI cân tại N
=> NM = NI ( đpcm )
Cho AMNP vuông tại M. Kẻ MK ⊥ NP (K ∈ NP). Tia phân giác của góc PMK cắt NP tại I. Chứng minh NM = NI
Cho tam giác MNP vuông tại M.Kẻ MH vuông góc với NP(K thuộc NP).Tia phân giác của góc PMK cắt NP tại I.Chứng minh NM=NI
\(\widehat{KIM}+\widehat{KMI}=90^o\)(hai góc phụ nhau)
\(\widehat{IMN}+\widehat{IMP}=90^o\)(hai góc phụ nhau)
\(\widehat{KMI}=\widehat{IMP}\)(vì \(MI\)là tia phân giác của \(\widehat{PMK}\))
Suy ra \(\widehat{IMN}=\widehat{KIM}\).
Xét tam giác \(NIM\)có \(\widehat{IMN}=\widehat{KIM}\)(cmt)
suy ra \(\Delta NIM\)cân tại \(N\)
suy ra \(NI=NM\).
Cho tam giác AMNP vuông tại M. Kẻ M K ⊥ N P ( K ∈ N P ) . Tia phân giác của góc PMK cắt NP tại I. Chứng minh N M I ^ = N I M ^
cho tam giác mnp vuông tại m trên np lấy e sao cho ne=nm qua e kẻ kẻ đường thẳng vuông góc với np cắt mp ở i chứng minh tam giác mni=tam giác eni,c/m tam giác ime cân, so sánh im và ip,kẻ đường cao mk của tam giác mnp c/m me là tia p/g cua góc kmp , kẻ ph vuông góc với ni tại h cắt nm kéo dài ở f c/m E,I,F thẳng hàng
Cho tam giác MNP vuông tại M, vẽ tia phân giác NI. Kẻ ME vuông góc với NI, đường thẳng ME cắt NP ở K. Đường thẳng qua M và song song với IK cắt NI ở H, cắt NP ở F
Chứng minh a) NM=NP
b) Mf vg góc với NP
c KH//MP
Đề sai rồi PN là cạnh huyền mà sao = MN được
CHO TAM GIÁC MNP VUÔNG TẠI N(NM<NP), TIA PHÂN GIÁC CỦA GÓC M CẮT CẠNH NP TẠI K.TRÊN MP LẤY ĐIỂM I SAO CHO MN=MI
A) CHỨNG MINH TAM GIÁC MNK = TAM GIÁC MIK. SUY RA TAM GIÁC NKI CÂN
B) TIA MN CẮT TIA IK TẠI E. CHỨNG MNH MK VUÔNG GÓC EP
a: Xét ΔMNK và ΔMIK có
MN=MI
góc NMK=góc IMK
MK chung
=>ΔMNK=ΔMIK
=>KN=KI
=>ΔKNI cân tại K
b: ΔMNK=ΔMIK
=>góc MIK=góc MNK=90 độ
b: Xét ΔMEP có
EI,PN là đường cao
EI cắt PN tại K
=>K là trực tâm
=>MK vuông góc EP
Cho tam giác MNP vuông tại M,đường phân giác ND của góc MNP .Kẻ ME vuông góc với ND tại E,ME cắt NP tại K.Kẻ MH vuông góc với NP tại H,MH cắt ND tại I
a) CM tam giác MNK cân
b)CM tam giác NMD=tam giác NKD.Từ đó suy ra DK vuông góc NP và tam giác MDK cân
c)Chứng minh MK là tia phân giác của góc HMP
d)CM IK song song MP
MÌnh cần gấp lắm bài này lớp 7 nhé
Cho tam giác MNP vuông tại N (MN > NP). Tia phân giác góc M cắt NP ở O. Kẻ OH vuông góc với MP. Trên tia NP lấy điểm E sao cho MN = NE. Đường thẳng vuông góc với NE cắt tia OH ở F.
a° là số đo góc OMF. Tính E = 3a