Tìm x, y , z \(\in\)Z biết: x - 9 = -9 ; y - z = -10; z + x + 11
Câu 1
a) Tìm x, y, z \(\in\)Z, biết : |x| + |y| + |z| = 0
b) Tìm x\(\in\)Z, biết : |x + 2| + |x + 5| + |x + 9| + |x + 11| + 5x
c
Tìm các số hửu tỉ x,y,z biết rằng:
x( x + y + z) = -5 ; y( x+ y + z) =9 ; z 9 ( x+ y+ z ) = 5.
Tìm x;y;z biết x(x+y+z)=-5; y(x+y+z)=9;z (x+y+z) = 5
Tìm số hữu tỉ x, y ,z biết :x.(x+y+z)= -5, y.(x+y+z)=9, z.(x+y+z)=5
x(x+y+z) = -5 (1)
y(x+y+z) = 9 (2)
z(x+y+z) = 5 (3)
Cộng (1) ( 2)và (3) ta có
x(x+y+z) + y(x+y+z) + z(x+y+z) = -5 + 9 +5
=> (x+y+z) (x +y +z) = 9
=> (x+y+z)^2 = 9
=> x+y +z = 3 hoặc x+y +z = - 3
(+) TH1 x + y +z = 3
thay vào (1) ta có : x . 3 = -5 => x = -5/3
thay vào (2) ta có : y . 3 = => y =3
thay vào 3 ta có z . 3 = 5 => z = 5/3
(+) TH2 tương tự
(lik e nha **** hết cho mình đi)
Tìm x,y,z thuộc Z biết:
x.( x + y + z ) = -5 ; y.( x + y + z ) =9 ; z.( x + y + z ) = 5
Cộng ba vế trên vế theo vế ta được:
\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=-5+9+5\)
\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-3\\x+y+z=3\end{cases}}\)
Với \(x+y+z=-3\)
\(\Rightarrow x=\frac{5}{3}\);\(y=-3\);\(z=-\frac{5}{3}\)
Với \(x+y+z=3\)
\(\Rightarrow x=-\frac{5}{3}\);\(y=3\);\(z=\frac{5}{3}\)
Câu 32: Cho biết 6𝑥=4𝑦=3𝑧 𝑣à 𝑥+𝑦+𝑧=27 thì giá trị của x ,y, z tìm được là
A. x = 6, y = 9, z = 12 B. x = 6, y = 12, z = 9
C. x = 12, y = 9, z = 6 D. x = 9, y = 12, z = 6
thôi thôi thôi
chị lập tỉ lệ thức đi chị ơi
cũng đến Ạ với chị ý
Tìm các số hựu tỉ x,y,z biết rằng :x(x+y+z)=-5; y(x+y+z)=9 ; z(x+y+z)=5
\(\hept{\begin{cases}x\left(x+y+z\right)=-5\left(1\right)\\y\left(x+y+z\right)=9\left(2\right)\\z\left(x+y+z\right)=5\left(3\right)\end{cases}}\)
Cộng vế của ( 1 ) , ( 2 ) và ( 3 ) ta có
( x+y+z)\(^2\)=9
=>x +y + z = \(\ne\)9
Xét x + y +z = 9
=> \(\hept{\begin{cases}x.9=-5\\y.9=9\\z.9=5\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{-5}{9}\\y=1\\z=\frac{5}{9}\end{cases}}\)
Xét x + y + z = - 9
=> \(\hept{\begin{cases}x.\left(-9\right)=\left(-5\right)\\y.\left(-9\right)=9\\z.\left(-9\right)=5\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{5}{9}\\y=-1\\x=\frac{-5}{9}\end{cases}}\)
tìm x,y,z biết x/2=y/5; y/3=z/4 và x+y-z=-9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{20}=\dfrac{x+y-z}{6+15-20}=-9\)
Do đó: x=-54;y=-135; z=-180
tìm các số hữu tỉ x,y,z biết rằng:x(x+y+z)=-5:y(x+y+z)=9;z(x+y+z)=5.
mình sẽ đơn giản cách giải ấy cho cậu
cậu lần lượt cộng các vế trái và xế phải lại thì ta sẽ được (x + y + z)(x + y + z) = -5 + 9 + 5
(x + y + z)2 = 9
chắc bạn học qua lũy thừa rồi nhỉ, thì ta sẽ có được 9 = 32 hoặc 9 = (-3)2
vậy có 2 trường hợp hoặc (x + y + z) = 3 hoặc (x + y + z) = -3
với (x + y + z) = 3 thì thay vào x (x + y + z) = -5 => 3x = -5 => x = \(\frac{-5}{3}\)
tương tự ,cậu thay (x + y + z) = 3 vào vao 2 biểu thức còn lại ta sẽ được y = 3, z = \(\frac{5}{3}\)
Và trường hợp còn lại (x + y + z) = -3 cậu cũng thay lần lượt vào 3 biểu thức trên, ta sẽ suy ra được
x = \(\frac{5}{3}\) ; y = -3 ; z= \(\frac{-5}{3}\)
vậy \(\orbr{\begin{cases}x=\frac{-5}{3};y=3;z=\frac{5}{3}\\x=\frac{5}{3};y=-3;z=\frac{-5}{3}\end{cases}}\) thế nhé, mình lười viết đầy đủ phần trên cho nên neesuko hiểu cứ hỏi mình
\(\hept{\begin{cases}x\left(x+y+z\right)=-5\left(1\right)\\y\left(x+y+z\right)=9\left(2\right)\\z\left(x+y+z\right)=5\left(3\right)\end{cases}}\)
Cộng theo vế của (1), (2) và (3) ta đc:
\(\left(x+y+z\right)^2=9=\left(-3\right)^2\)hoặc\(3^2\)
\(\Rightarrow x+y+z=-3\)hoặc\(3\)
Xét \(x+y+z=3\)lần lượt thay vào (1), (2), (3) ta có:
\(\hept{\begin{cases}x=-\frac{5}{3}\\y=3\\z=\frac{5}{3}\end{cases}}\)
Xét \(x+y+z=-3\)cũng thay vào (1),(2),(3) đc:
\(\hept{\begin{cases}x=\frac{5}{3}\\y=-3\\z=-\frac{5}{3}\end{cases}}\)
Vậy....