Cho ab=b^2 và acbc=(ba)^2. Tìm abc
Tìm số có ba chữ số abc thoả mãn ab = b^2 và acbc = (ba)^2
cho tam giác ABC vuông tại A, AB=6cm AC=8cm
a) tính BC
b) so sánh ABC và ACB
c) trên cạnh BC đặt điểm H sao cho BH=BA
Tham khảo
a) Vì tam giác ABC vuông tại A.
=> AB + AC = BC
Thay số: 6 + 8 =BC
=> BC= 14 cm
b) Vì 8 cm >6cm Mà cạnh AB đối diện với góc ACB, cạnh AC đối diện với góc ABC
=> Góc ABC > góc ACB
Tham khảo
c) Xét 2 tam giác ABD và HBD có:
+ AB = AC (Giả thiết)
+ BD là cạnh chung
+ Góc BAD = góc BHD = 90 độ (GT)
=> Tam giác ABD= t/g HBD(cạnh huyền- cạnh góc vuông)
=> Góc ABD= góc HBD(hai cạnh tương ứng)
=> BD là tia phân giác của ABC
d) Vì Tam giác BHD = t/g BAD => AD = HD (2 cạnh tương ứng)
Xét 2 t/g EDA , CDH có :
+ Góc EDA = góc HDG ( 2 góc đối đỉnh)
+ DA = DH ( cmt )
+ Góc EAD = góc CHD =90 độ (GT)
=> T/g EDA = t/g CDH (g-c-g)
=> ED = CD (2 cạnh tương ứng)
=. T/g EDC cân tại D
Cho tam giác ABC, các đường cao BD và CE cắt nhau tại H, chứng minh :
a) AE x AB = AD x AC
b) Góc AED = góc ACB
c) Tính diện tích tam giác ABC biết AC = 6cm ; BC = 5cm ; CD = 3cm
d) BE x BA + CD x CA = BC2
a: Xet ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng vơi ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AE*AB; AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
c: \(DB=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(S_{BAC}=\dfrac{1}{2}\cdot4\cdot6=12\left(cm^2\right)\)
Cho tam giác ABC có ba góc nhọn (AB<AC), các đường cao BD và CE cắt nhau tại H
a) Chứng minh: Tam giác ABD đồng dạng với tam giác ACE và AB.AE = AC.AD
b) Chứng minh: góc AED = góc ACB
c) Tia AH cắt ED và BC lần lượt tại K và F. Chứng minh: EK.FD = KD.EF
4) cho △ABC nhọn, đường cao AH. gọi D, E là hình chiếu của H trên AB, AC.
a) c/m: \(AE.AC=AD.AB\)
b) c/m: △ADE ∼△ACB
c) cho AB= 3cm, AC= 6cm, \(\widehat{A}\)= \(60^0\).tính \(S_{ABC}\)
Hình tự vẽ
a) ΔΔABH vuông tại H có đường cao HD
=> AD.AB = AH2 (Hệ thức lượng trong tam giác vuông) (1)
ΔΔAHC vuông tại H có đường cao HE
=> AE.AC = AH2 (Hệ thức lượng rong tam giác vuông) (2)
Từ (1) và (2) => AD.AB = AE.AC (=AH2)
b) ΔΔAHB vuông tại H có đường cao HD
=> 1HE2=1AH2+1HC21HE2=1AH2+1HC2 (Hệ thức lượng trong tam giác vuông) (4)
Từ (3) và (4) => AHAD=BCCMAHAD=BCCM
=> AH.CM = BC.AD (*)
Vì AD.AB = AE.AC (cmt)
=> ADAC=AEABADAC=AEAB
Chung ˆBACBAC^
=> ΔΔADE ~ ΔΔACB (c.g.c)
=> DE=AH.CMACDE=AH.CMAC(I)
ΔΔACM vuông tại M =>
Cho ab= b^2 ; abcd= ba^2 tìm abc
Cho tam giác ABC vuông tại A,kẻ AH vuông góc với BC tại H,biết BH=3,6cm;CH=6,4cm
a) Hãy tính độ dài các đoạn thẳng AH,AB và tính số đo góc HCA
b) Gọi M và N lần lượt là hình chiếu của H lên AB và AC.Chứng minh tam giác AMN đồng dạng với tam giác ACB
c) Tính diện tích tứ giác BMNC
a, \(BC=BH+HC=10\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}AH=\sqrt{BH\cdot HC}=4,8\left(cm\right)\\AB=\sqrt{BH\cdot BC}=6\left(cm\right)\end{matrix}\right.\)
\(\sin HCA=\dfrac{AB}{BC}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{HCA}\approx37^0\)
Cho tam giác ABC có AB<AC. AD là tia phân giác của góc BAC. Lấy điểm E thuộc AC sao cho AE=AB. AB cắt ED tại K.
a. DB=DE
b. góc AKE = góc ACB
c. tam giác KBE = tam giác CEB
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
=>BD=ED
b: Ta có: ΔABD=ΔAED
=>\(\widehat{ABD}=\widehat{AED}\)
=>\(\widehat{ABC}=\widehat{AEK}\)
Xét ΔAEK và ΔABC có
\(\widehat{AEK}=\widehat{ABC}\)
AE=AB
\(\widehat{EAK}\) chung
Do đó: ΔAKE=ΔACB
=>\(\widehat{AKE}=\widehat{ACB}\)
c: Ta có: ΔAKE=ΔACB
=>KE=CB
Ta có: BD+DC=BC
DE+DK=EK
mà BD=DE và BC=EK
nên DC=EK
Xét ΔDBK và ΔDEC có
DB=DE
\(\widehat{BDK}=\widehat{EDC}\)(hai góc đối đỉnh)
DK=DC
Do đó: ΔDBK=ΔDEC
=>BK=EC
Xét ΔBKE và ΔCEB có
BK=EC
BE=CB
BE chung
Do đó: ΔBKE=ΔCEB
Cho tam giác nhọn ABC (AB<AC), các đường cao AD,BE và CF cắt nhau tại H.
a) Chứng minh rằng: Tam giác ABC đồng dạng tam giác ACF và AB.AF = AC.AE
b) Chứng minh rằng: góc AED = góc ACB
c) Gọi M là trung điểm của BC, K là giao điểm của đường thẳng EF và đường thẳng BC. Chứng minh BC2 = 4.MD.MK