Cho số tự nhiên có hai chữ số. Biết chữ số hàng chục lớn hơn chữ số hàng đơn vị là 5, nếu viết chữ số 0 vào giữa số hàng chục và chữ số hàng đơn vị thì ta được số tự nhiên mới lớn hơn số cũ 630 đơn vị. Tìm số tự nhiên đó.
tìm số tự nhiên có hai chữ số biết chữ số hàng chục lớn hơn chữa số hàng đơn vị là 2, nếu viết xen chữ số 0 vào giữa chữ số hàng chục và chữ số hnagf đơn vị thì số đó tăng thêm 630 đơn vị
gọi số có hai chữ số đó là \(\overline{ab}\) ta có
\(\hept{\begin{cases}a-b=2\\\overline{a0b}-\overline{ab}=630\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=2\\100a+b-10a-b=630\end{cases}\Leftrightarrow}\hept{\begin{cases}a=7\\b=5\end{cases}}}\)
Vậy số đó là\(75\)
Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))
Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)
Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)
\(\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow-9a+9b=36\)
\(\Leftrightarrow a-b=-4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)
Vậy: Số cần tìm là 59
1 số tự nhiên có 2 chữ số nếu viết thêm chữ số 0 lên vào giữa chữ số hàng chục và chữ số hàng đơn vị thì số mới lớn hơn số cũ 90 đơn vị
các số : 10 ,11,12,13,14,15,16,17,18,19
Tìm số tự nhiên có hai chữ số biết nếu viết thêm số 7 vào giữa chữ số hàng chục và hàng đơn vị ta được số mới hơn số cũ 160 đơn vị
Gọi số cần tìm là \(\overline{ab}\)
Ta có :
\(\overline{ab}+160=\overline{a7b}\)
a x 10 + b + 160 = a x 100 + 70 + b
160 -70 = a x100 + b -b - a x10
90 = 90a
a = 1 ; b = 0;1;2;3;4;5;6;7;8;9
các số thoả mãn đề bài là
10 ; 11 ; 12;13;14;15;16;17;`18;19
Tìm số tự nhiên có hai chữ số, biết rằng năm lần chữ số hàng chục lớn hơn chữ số hàng đơn vị 12 đơn vị, và nếu viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới (có hai chữ số) lớn hơn số cũ 36 đơn vị.
Số đó là: .
gọi số cần tìm là \(\overline{xy}\)
ta có hệ
\(\hept{\begin{cases}5x-y=12\\\left(10y+x\right)-\left(10x+y\right)=36\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5x-y=12\\-9x+9y=36\end{cases}=>\hept{\begin{cases}45x-9y=108\\-45x+45y=180\end{cases}=>\hept{\begin{cases}36y=288\\5x-y=12\end{cases}=>\hept{\begin{cases}y=8\\5x=20\end{cases}}}}}\)
\(\Rightarrow\hept{\begin{cases}y=8\\x=4\end{cases}}\)
zậy số cần tìm là 48
Tìm số tự nhiên có 2 chữ số, biết chữ số hàng đơn vị lớn hơn chữ số hàng chục là 4 đơn vị. Nếu viết thêm chữ số 3 vào 2 chữ số thì nó có chữ số cũ lớn hơn chữ số mới là 300 đơn vị
Một số có 2 chữ số, chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6. Nếu viết xen chữ số 0 vào xen giữa hai chữ số hàng chục và hàng đơn vị thì đc số mới lớn hơn số cũ 720 đơn vị. Tìm số ban đầu
Tìm số tự nhiên có hai chữ số, biết rằng ba lần chữ số hàng chục nhỏ hơn chữ số hàng đơn vị 1 đơn vị, và nếu viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới (có hai chữ số) lớn hơn số cũ 27 đơn vị.
Tìm số tự nhiên có hai chữ số, biết rằng ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị 16 đơn vị, và nếu viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới (có hai chữ số) nhỏ hơn số cũ 36 đơn vị.
Gọi số cần tìm là \(\overline{ab}\)
Theo đề bài
\(\overline{ab}-\overline{ba}=10.a+b-10.b-a=9.a-9.b=36\Rightarrow a-b=4\) (1)
Theo đề bài
\(3.a-b=16\) (2)
Từ (1) và (2) ta có hệ phương trình
\(\hept{\begin{cases}a-b=4\\3a-b=16\end{cases}\Rightarrow\hept{\begin{cases}a=6\\b=2\end{cases}}}\)