Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phamthilanhuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 11:25

a)Ta có: \(\dfrac{x+3}{x+1}+\dfrac{1}{3}\ge0\)

\(\Leftrightarrow\dfrac{3x+9+x+1}{3\left(x+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{4x+10}{3x+3}\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1>0\\4x+10\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-1\\x\le-\dfrac{5}{2}\end{matrix}\right.\)

b) Ta có: \(\dfrac{x+2}{x+3}+\dfrac{1}{3}\le0\)

\(\Leftrightarrow\dfrac{3x+6+x+3}{3\left(x+3\right)}\le0\)

\(\Leftrightarrow\dfrac{4x+9}{3x+9}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+9>0\\4x+9\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\le-\dfrac{9}{4}\end{matrix}\right.\Leftrightarrow-3< x\le-\dfrac{9}{4}\)

Lê Thu Dương
13 tháng 7 2021 lúc 11:30

a)\(\dfrac{x+3}{x+1}\ge-\dfrac{1}{3}\left(x\ne-1\right)\)

\(\Leftrightarrow\dfrac{x+3}{x+1}+\dfrac{1}{3}\ge0\)

\(\Leftrightarrow\dfrac{3x+9+x+1}{3x+3}\ge0\)

\(\Leftrightarrow\dfrac{4x+10}{3x+3}\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4x+10\ge0\\3x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}4x+10\le0\\3x+3< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-\dfrac{5}{2}\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{-5}{2}\\x< -1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>-1\\x\le\dfrac{-5}{2}\end{matrix}\right.\)

 b) \(\dfrac{x+2}{x+3}\le-\dfrac{1}{3}\left(x\ne-3\right)\)

\(\dfrac{x+2}{x+3}+\dfrac{1}{3}\le0\)

\(\Leftrightarrow\dfrac{3x+6+x+3}{3x+9}\le0\)

\(\Leftrightarrow\dfrac{4x+9}{3x+9}\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4x+9\ge0\\3x+9< 0\end{matrix}\right.\\\left\{{}\begin{matrix}4x+9\le0\\3x+9>0\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-\dfrac{9}{4}\\x< -3\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-\dfrac{9}{4}\\x>-3\end{matrix}\right.\end{matrix}\right.\)    

TH1: loại

TH2: TM

Vậy no của BPT là :\(-\dfrac{9}{4}\ge x>-3\)

chúc bạn học tốt

Trần Hà Nhung
Xem chi tiết
Trần Thanh Phương
15 tháng 8 2018 lúc 7:29

a) x(y-z) + y(z-x) + z(x-y)

= xy - xz + zy - xy + xz - yz

= ( xy - xy ) - ( xz - xz ) + ( zy - yz )

= 0 - 0 + 0

= 0 ( đpcm )

Trần Thanh Phương
15 tháng 8 2018 lúc 7:31

b) x(y+z-yz) - y(z+x-xz) + z(y-x)

= xy + xz - xyz - yz - xy + xyz + zy - zx

= ( xy - xy ) + ( xz - zx ) - ( xyz - xyz ) - ( yz - zy )

= 0 + 0 - 0 - 0

= 0 ( đpcm )

KAl(SO4)2·12H2O
15 tháng 8 2018 lúc 7:42

Ko cần tính theo kiểu của Bonking, tính ntn cx đc

a) x(y - z) + y(z - x) + z(x - y)

= xy - xz + y(z - x) + z(x - y)

= xy - xz + yz - xy + z(x - y)

= xy - xz + yz - xy + xz - yz

= 0

b) x(y + z - yz) - y(z + x - xz) + z(y - x)

= xy + xz - xyz - yz - y(z + x - xz) + z(y - z)

= xy + xz - xyz - yz - xy - xy + xyz + z(y - x)

 = xy + xz - xyz - yz - xy - xy + xyz + xyz + yz - xz

= 0

Bách Bách
Xem chi tiết
Bùi Mai Anh
Xem chi tiết
nguyễn thùy linh
30 tháng 11 2017 lúc 18:14

 A=[(-4x-8)+13]/(x+2) 
=-4+13/(x+2) thuộc Z <=> 13/(x+2) thuộc Z <=> 13 chia hết cho (x+2)(do x thuộc Z) 
hay (x+2) thuộc Ư(13)={-1;1;13;-13} 
tìm x 
B=[(x²-1)+6]/(x-1) 
=x+1+6/(x-1) 
làm tiếp như A 
C=[(x²+3x+2)-3]/(x+2) 
=[(x+2)(x+1)-3]/(x+2) 
=x+1-3/(x+2) 
làm tiếp như A 
2/cậu cho đề thiếu đọc lại đề xem A có thuộc Z không 
3,4 cũng vậy

custone
Xem chi tiết
Nguyễn Thảo Nguyên
12 tháng 1 2019 lúc 16:20

a) Vì x <  3 => | x - 3 | = - ( x - 3 )

 => - ( x - 3 ) + x - 5

=>  -x + 3 + x - 5

=> ( -x + x ) +( 3 - 5)

=>     0         + ( -2 )

=>           -2

b)Vì x lớn hơn hoặc bằng -2 => |2 + x| = x + 2

=> ( x + 2 ) - ( x + 1)

=  x + 2 - x - 1

= ( x - x ) + ( 2 - 1)

=     0           + 1

=      1

Câu c tương tự nhé

custone
13 tháng 1 2019 lúc 16:12

làm cho mk câu c vs Nguyễn Thảo Nguyên ơi

Hiếu Lê
Xem chi tiết
Hiếu Lê
Xem chi tiết
Đoàn Đức Hà
1 tháng 8 2021 lúc 20:02

\(B=-x^2-10y^2+6xy-2x+10y-3\)

\(=-x^2-9y^2-1+6xy-2x+6y-y^2+4y-4+2\)

\(=-\left(x-3y+1\right)^2-\left(y-2\right)^2+2\le2\)

Dấu \(=\)khi \(\hept{\begin{cases}x-3y+1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\).

Khách vãng lai đã xóa
Ly Nguyễn Khánh
Xem chi tiết
ST
12 tháng 7 2018 lúc 21:11

1/ Câu hỏi của Jey - Toán lớp 7 - Học toán với OnlineMath

2/ \(\left(a-b\right)^2+6ab=36\Rightarrow6ab=36-\left(a-b\right)^2\le36\Rightarrow ab\le\frac{36}{6}=6\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)

Vậy abmax = 6 khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)

3/ 

a, Để A đạt gtln <=> 17/13-x đạt gtln <=> 13-x đạt gtnn và 13-x > 0

=> 13-x = 1 => x = 12

Khi đó \(A=\frac{17}{13-12}=17\)

Vậy Amax = 17 khi x = 12

b, \(B=\frac{32-2x}{11-x}=\frac{22-2x+10}{11-x}=\frac{2\left(11-x\right)+10}{11-x}=2+\frac{10}{11-x}\)

Để B đạt gtln <=> \(\frac{10}{11-x}\) đạt gtln <=> 11-x đạt gtnn và 11-x > 0

=>11-x=1 => x=10

Khi đó \(B=\frac{10}{11-10}=10\)

Vậy Bmax = 10 khi x=10

Nguyễn Khoa
13 tháng 7 2018 lúc 22:17

bạn trả lời đúng rùi

Nguyễn Lam Giang
Xem chi tiết
Phạm Lê Thiên Triệu
29 tháng 11 2018 lúc 9:37

ta có:

|x|\(\ge\)0

|y|\(\ge\)0

=>|x|+|y|\(\ge\)0

mà:|x|+|y|\(\le\)0

=>|x|+|y|=0

=>|x|=|y|=0

=>x=y=0