Tính tổng sau : S = 2/5.9 +2/9.13 + 2/13.17 +.....+ 2/97.101
Giúp mình nha mình cầm gấp
Tính:
1.5 + 5.9 + 9.13 + 13.17 + ................ + 97.101
Tính:
1.5 + 5.9 + 9.13 + 13.17 + ................ + 97.101
Tính nhanh:
a) 3/5+3/5.9+3/9.13+...+3/97.101
b) (1+1/2).(1+1/3).(1+1/4)...(1+1/99)
GIÚP MÌNH VỚI Ạ.CẢM ƠN MỌI NGƯỜI!
\(a,\dfrac{3}{5}+\dfrac{3}{5\cdot9}+\dfrac{3}{9\cdot13}+....+\dfrac{3}{97\cdot101}\)
\(=\dfrac{3}{4}\cdot\left(\dfrac{4}{5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+....+\dfrac{4}{97\cdot101}\right)\)
\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+....+\dfrac{1}{97}-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{4}\cdot\dfrac{100}{101}\)
\(=\dfrac{75}{101}\)
\(b,\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot....\cdot\left(1+\dfrac{1}{99}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot....\cdot\dfrac{100}{99}\)
\(=\dfrac{100}{2}=50\)
Tính nhanh:
a) \(\dfrac{3}{5}+\dfrac{3}{5.9}+\dfrac{3}{9.13}+...+\dfrac{3}{97.101}\)
= \(\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)
= \(\dfrac{3}{4}\left(1-\dfrac{1}{101}\right)\)
= \(\dfrac{3}{4}\times\dfrac{100}{101}\)
= \(\dfrac{75}{101}\)
b) \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{4}\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)
\(=\dfrac{3.4.5...99.100}{2.3.4...98.99}\)
\(=\dfrac{100}{2}\)
\(=50\)
Tính S
2/1.5+2/5.9+2/9.13+........+2/21.25
giúp mình với, mình đang cần gấp
A = 4/1.5 + 4/5.9 + 4/9.13 + 4/13.17 + 4/ 17.21 < 1
các bạn giúp mình nha ! mình rất gấp tất cả chỉ là phân số thôi
Chứng minh \(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}< 1\)
\(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)
\(A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\)
\(A=\frac{1}{1}-\frac{1}{21}\)
\(A=\frac{20}{21}\)
\(\frac{20}{21}< 1\)
=> \(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}< 1\)( đpcm )
* Mình sợ sai xD *
tính : A = 2/5.9 + 2/9.13 + 2/13.17 +....+ 2/55.59
\(A=\frac{2}{5\cdot9}+\frac{2}{9\cdot13}+...+\frac{2}{55\cdot59}\)
\(A=2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{55}-\frac{1}{59}\right)\)
\(A=2\left(\frac{1}{5}-\frac{1}{59}\right)\)
\(A=2\left(\frac{59}{295}-\frac{5}{295}\right)\)
\(A=2\cdot\frac{54}{295}\)
\(A=\frac{536}{295}\)
Tính tổng S= 1/5.9+1/9.13+1/13.17+1/17.21+1/21.25
\(4S=4.\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{21.25}\right)\)
=\(\frac{4}{5.9}+\frac{4}{9.13}+....+\frac{4}{21.25}_{ }\)
=\(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+....+\frac{1}{21}-\frac{1}{23}\)
=\(\frac{1}{5}-\frac{1}{25}=\frac{5}{25}-\frac{1}{25}=\frac{4}{25}\)
=> \(S=\frac{4}{25}:4=\frac{4}{25}.\frac{1}{4}=\frac{1}{25}\)
\(S=\frac{1}{5\times9}+\frac{1}{9\times13}+...+\frac{1}{21\times25}\)
\(S\times4=\frac{4}{5\times9}=\frac{4}{9\times13}+...+\frac{4}{21\times25}\)
\(S\times4=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{21}-\frac{1}{25}\)
\(S\times4=\frac{1}{5}-\frac{1}{25}\)
\(S\times4=\frac{4}{25}\)
\(S=\frac{1}{25}\)
ta có S= 1/5.9+1/9.13+1/13.17+1/17.21+1/21.25
<=>4S=4.(1/5.9+1/9.13+1/13.17+1/17.21+1/21.25)
<=>4S=4/5.9+4/9.13+4/13.17+4/17.21+4/21.25
<=>4S=1/5-1/9+1/9-1/13+1/13-1/17+1/21-1/25
<=>4S=1/5-1/25
<=>4S=4/25
<=>S=4/25:4
<=>S=1/25
vậy S=1/25
A, m= 4/1.3+4/3.5+4/5.7+....+4/2013.2015
b,S=2/5.9+2/9.13+2/13.17+....+2/97.101
c,A=1/5.6+1/6.7+1/7.8+......+1/24.25
d,B=2/1.3+2/3.5+2/5.7+....+2/99.101
e,C=52/1.6+52/6.11+52/11.16+52/16.21+52/21.26+52/26.31
\(\dfrac{1}{5.9}+\dfrac{1}{9.13}+\dfrac{1}{13.17}+\dfrac{1}{17.21}+\dfrac{1}{21.25}\) (Tính tổng)
\(\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{21.25}\\ =\dfrac{4\cdot\dfrac{1}{4}}{5.9}+\dfrac{4\cdot\dfrac{1}{4}}{9.13}+...+\dfrac{4\cdot\dfrac{1}{4}}{21.25}\\ =\dfrac{1}{4}\left(\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{21.25}\right)\\ =\dfrac{1}{4}\cdot\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{21}-\dfrac{1}{25}\right)\\ =\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{25}\right)=\dfrac{1}{4}\left(\dfrac{5}{25}-\dfrac{1}{25}\right)\\ =\dfrac{1}{4}\cdot\dfrac{4}{25}=\dfrac{1}{25}\)
`1/(5.9) + 1/(9.13) + ...+ 1/(21.25)`
`= 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/21 - 1/25`
`= 1/5 - 1/25`
`= 4/25`