tìm nghiệm nguyên x,y của phương trình \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
Tìm các nghiệm nguyên của phương trình: \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
Giải phương trình nghiệm nguyên: \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
\(PT\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)
\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)\)
\(=196-3\left(5y-7\right)^2\)
Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow\left(5y-7\right)^2\le65\)
Mặt khác \(5y-7\equiv3\left(mod5\right)\)
\(\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)
do đó \(\left(5y-7\right)^2\in\left\{4,9,14,19,24,29,34,39,44,49,54,59,64\right\}\)
mà (5y-7)2 là số chính phưng nên \(\left(5y-7\right)^2\in\left\{4,9,64\right\}\)
Từ đó tính ra
\(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
\(\Leftrightarrow5x^2+5xy+5y^2-7x-14y=0\)
\(\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)
\(\Rightarrow\Delta_x=\left(5y-7\right)^2-4\cdot5\cdot\left(5y^2-14y\right)\)
\(=-75y^2+210y+49\)
\(=196-3\left(25y^2-2\cdot5y\cdot7+79\right)\ge0\)
\(=196-3\left(5y-7\right)^2\ge0\)
Để phương trình có nghiệm nguyên thì \(\Delta_x\ge0\Leftrightarrow\left(5y-7\right)^2\le65\)
Nhận thấy \(5y-7\equiv3\left(mod5\right)\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)
Do đó \(\left(5y-7\right)^2\in\left\{4;9;14;19;24;29;34;39;44;49;54;59\right\}\)
Mà \(\left(5y-7\right)^2\)chinh phương nên \(\left(5y-7\right)^2\in\left\{4;9;49\right\}\)
Đến đây ta xét trường hợp là ra.
Trl :
Bạn kia làm đúng rồi nhé !
Học tốt nhé bạn @
tìm các nghiệm nguyên (x;y) của các phương trình:
a/ \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
b/\(x^3+2y^2+3xy-x-y+3=0\)
c/\(9x+2=y^2+y\)
Tìm nghiệm nguyên của phương trình:
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
Tìm nghiệm nguyên của phương trình:
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
Giải p/trình nghiệm nguyên:\(5\left(X^2+XY+Y^2\right)\)=\(7\left(X+2Y\right)\)
1. Tìm a,b ∈ Z+(a,b ≠1) để 2a+3b là số chính phương
2. Tìm nghiệm nguyên không âm của phương trình:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\)
3. Tìm x,y,z ∈ Z+ t/m:
\(xy+y-x!=1;yz+z-y!=1;x^2-2y^2+2x-4y=2\)
4. Tìm tất cả các số nguyên tố p;q;r sao cho:
pq+qp=r
5. Tìm nghiệm nguyên tố của phương trình:
\(x^y+y^x+2022=z\)
6. CMR: Với n ∈ N và n>2 thì 2n-1 và 2n+1 không thể đồng thời là 2 số chính phương
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...
Lúc nãy bận thi online nên giờ mới làm tiếp được, bạn thông cảm.
Bài 4:
Do p; q; r là các SNT nên \(p^q+q^p>2^2+2^2=8\Rightarrow r>8\) nên r là SNT lẻ
Mà r lẻ thì trong 2 số \(p^q;q^p\) phải có 1 số lẻ, một số chẵn.
Do vai trò p; q như nhau nên không mất tính tổng quát ta giả sử p lẻ, q chẵn
\(\Rightarrow q=2\). Lúc này ta có:
\(p^2+2^p=r\)
+Xét p=3\(\Rightarrow p^2+2^p=r=17\left(tm\right)\) (Do p lẻ nên loại TH p=2)
+Xét p>3. Ta có:
\(\left\{{}\begin{matrix}p^2\equiv1\left(mod3\right)\\2^p\equiv\left(-1\right)^p\equiv-1\left(mod3\right)\end{matrix}\right.\)
\(\Rightarrow p^2+2^p\equiv1+\left(-1\right)\equiv0\left(mod3\right)\)
\(\Rightarrow\left(p^2+2^p\right)⋮3\) mà \(p^2+2^p>3\) nên là hợp số
\(\Rightarrow r\) là hợp số, không phải SNT, loại.
Vậy ta có \(\left(p;q;r\right)\in\left\{\left(3;2;17\right);\left(2;3;17\right)\right\}\) tm đề bài
Bài 6: Ta có 1SCP lẻ chia cho 4 dư 1.
Nếu 2n-1 là SCP thì ta có
\(2n-1\equiv1\left(mod4\right)\Leftrightarrow2n+1\equiv3\left(mod4\right)\)
Do đó 2n+1 không là SCP
\(\Rightarrowđpcm\)
Tìm nghiệm nguyên dương của pt \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
=> 5x2 + 5xy + 5y2 = 7x + 14y
=> 5x2 + 5xy - 7x + 5y2 - 14y = 0
=> 5x2 + (5y -7).x + (5y2 - 14y) = 0 (*)
Tính \(\Delta\) = (5y - 7)2 - 4.5.(5y2 - 14y) = -75y2 + 210y + 49
Để x nguyên thì \(\Delta\) là số chính phương <=> -75y2 + 210y + 49 = k2 ( với k nguyên)
=> - 3. (25y2 - 2.5y.7 + 49) + 196 = k2
=> -3.(5y - 7)2 + 196 = k2
=> 3.(5y - 7)2 + k2 = 196 => 3. (5y-7)2 \(\le\) 196 => (5y - 7)2 \(\le\) 66 =>-8 \(\le\) 5y - 7 \(\le\) 8
=> -1/5 \(\le\) y \(\le\) 3
y nguyên nên y có thể bằng 0; 1;2;3
Với tưng giá trị của y ta thay vào (*) => x
Các giá trị x; y nguyên tìm được là các giá trị thỏa mãn yêu cầu
1. Tìm mọi nghiệm nguyên của phương trình \(\left(2x-y-2\right)^2=7\left(x-2y-y^2-1\right)\)
2. Giải phương trình \(x=\left(2010+\sqrt{x}\right)\left(1-\sqrt{1-\sqrt{x}}\right)^2\)
3. Giải hệ phương trình:
\(xy^2-2y+3x^2=0
\)
\(y^2+x^2y+2x=0\)
(đây là một hệ pt)