Tìm giá trị nhỏ nhất của x^2+10y^2+6xy-18y-4x+2033
tìm giá trị nhỏ nhất của biểu thức sau A=x^2-2xy+2y^2+2x-10y+2033
\(A=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2016\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\)
\(A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\)
vì \(\left(x-y+1\right)^2\ge0\)
\(\left(y-4\right)^2\ge0\)
nên \(\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\)
dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)
vậy gtnn của bt là 2016 khi x=3;y=4
đề này của sở giáo dục và đào tạo tỉnh hà nam
mk chiu ban ak di thi mk cug vao caau day nhưng ko biet lam
Tìm giá trị nhỏ nhất của: d= x^2 + xy + y^2 +1 e= 5x^2 + 10y^2 - 6xy - 4x - 2y +3
D= x^2+2*(1/2)xy+((1/2)y)^2+(3/4)y^2+1
=(x+(1/2)y)^2 +1
Nên min D=1
E=(2x-1)^2+(y-1)^2+(x-3y)^2+1
nên min E=1
Tìm giá trị nhỏ nhất của: d= x^2 + xy + y^2 +1 e= 5x^2 + 10y^2 - 6xy - 4x - 2y +3
D= x^2+2*(1/2)xy+((1/2)y)^2+(3/4)y^2+1
=(x+(1/2)y)^2 +1
Nên min D=1
E=(2x-1)^2+(y-1)^2+(x-3y)^2+1
nên min E=1
Tìm x,y sao cho
A= 2x^2 + 9y^2 - 6xy - 12y +2021 có giá trị nhỏ nhất
B= -x^2 + 2xy - 4x + 2x + 10y - 8 có giá trị lớn nhất
Tìm giá trị nhỏ nhất của biểu thức \(B=5x^2+10y^2-6xy-4x-2y+3\)
bạn xem lại đề đi, sao lại có 5x^2+10x^2 , sao không viết thành 15x^2 luôn chứ
Tìm giá trị nhỏ nhất
A=-x2+2xy-4y2+2x+18y-12
B=-x2-9xy-10y2+4x-12y+37
d= x^2 +xy + y^2 +1
E= 5x^2 +10y^2 - 6xy - 4x - 2y +3
G=(2x-1)^2 + (x+2)^2
tìm giá trị nhỏ nhất
D= x^2+2*(1/2)xy+((1/2)y)^2+(3/4)y^2+1
=(x+(1/2)y)^2 +1
Nên min D=1
E=(2x-1)^2+(y-1)^2+(x-3y)^2+1
nên min E=1
tìm giá trị bé nhất của M=2x^2+5y^2-6xy+4x-10y+100
Phòng GD-ĐT TP. Bắc Giang năm học 2015-2016
Bài 2:
a/ M=2x2+5y2-6xy+4x-10y+100
<=>M= 1/2(4x2+10y2-12xy+8x-20y+200)
<=>M=1/2[(4x2+9y2+4-12xy+8x-12y)+(y2-8y+16)+180]
<=>M=1/2[(2x-3y+2)2+(y-4)2+180]
<=>M=1/2(2x-3y+2)2+1/2(y-4)2+90
1/2(2x-3y+2)2+1/2(y-4)2 >=0
=> M >= 90
Dấu "=" xảy ra <=> (x,y)=(5;4)
Vậy min M là M=90 tại (x,y)=(5;4)
Tìm giá trị nhỏ nhất của 2x^2+9y^2 -6xy-6x-12y+2004
Tìm giá trị lớn nhất của
a) -5-(x-1)(x+2
b) -x^2+2xy-4y^2+2x+10y-8