Cho tứ giác ABCD. Đường thẳng qua A và // với BC cắt BD tại E. Đường thẳng qua B và // với AD cắt AC tại F. Chứng minh EF//CD
Cho tứ giác \(ABCD\) có \(AC\) và \(BD\) cắt nhau tại . Qua \(O\), kẻ đường thẳng song song với \(BC\) cắt \(AB\) tại \(E\), kẻ đường thẳng song song với \(CD\) cắt \(AD\) tại \(F\).
a) Chứng minh: \(EF//BD\);
b) Từ \(O\) kẻ đường thẳng song song với \(AB\) cắt \(BC\) tại \(G\) và đường thẳng song song với \(AD\) cắt \(CD\) tại \(H\). Chứng minh rằng \(CG.DH = BG.CH\).
a) Xét tam giác \(ADC\) có \(OF//DC\), theo định lí Thales ta có:
\(\frac{{AF}}{{AD}} = \frac{{AO}}{{AC}}\) (1)
Xét tam giác \(ABC\) có \(OE//BC\), theo định lí Thales ta có:
\(\frac{{AE}}{{AB}} = \frac{{AO}}{{AC}}\) (2)
Từ (1) và (2) suy ra, \(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)
Xét tam giác \(ABD\) có:
\(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)
Theo định lí Thales đảo suy ra \(EF//BD\).
b) Xét tam giác \(ADC\) có \(OH//AD\), theo định lí Thales ta có:
\(\frac{{CH}}{{CD}} = \frac{{CO}}{{AC}}\) (3)
Xét tam giác \(ABC\) có \(OG//AB\), theo định lí Thales ta có:
\(\frac{{CG}}{{BC}} = \frac{{CO}}{{AC}}\) (4)
Từ (3) và (4) suy ra, \(\frac{{CH}}{{CD}} = \frac{{CG}}{{BC}}\)
Theo định lí Thales đảo suy ra \(GH//BD\).
Xét tam giác \(BCD\) có \(GH//BD\), theo định lí Thales ta có:
\(\frac{{CH}}{{DH}} = \frac{{CG}}{{BG}} \Rightarrow CH.BG = DH.CG\) (điều phải chứng minh).
a: Xét ΔADC có OF//DC
nên AF/AD=AO/AC
Xét ΔABC có EO//BC
nên AE/AB=AO/AC
=>AF/AD=AE/AB
=>EF//BD
b: OH//AD
=>CH/CD=CO/CA
OG//AB
=>CG/BC=CO/CA
=>CG/BC=CH/CD
=>GH//BD
=>CH/DH=CG/BG
=>CH*BG=DH*CG
Cho tứ giác ABCD, hai đường chéo cắt nhau tại O. Đường thẳng đi qua A và // BC cắt BD tại E. Duogn729 thẳng qua B và // AD cắt AC tại F
chứng minh: EF//CD
Cho tứ giác lồi ABCD. Đường thẳng đi qua đỉnh B và song song với cạnh CD cắt đường thẳng AC tại F. Đường thẳng qua đỉnh C và song song với AB cắt đường thẳng BD tại E. Chứng minh AD//EF.
Cho tứ giác ABCD. Đường thẳng qua A // với BC cắt BD tại E. Đường thẳng qua B// với AD cắt AC ở F. Chứng minh EF//DC
cho tứ giác ABCD. AC cắt BD tại O, vẽ OE//BC (E thuộc AB), OF//CD (F thuộc AD) a) chứng minh EF//BD b) đường thẳng vẽ qua A song song với CB cắt BD tại M, đường thẳng vẽ từ B song song với AD cắt AC tại N. cứng minh MN//CD
a) Xét tam giác ABC có: OE // BC (gt).
\(\Rightarrow\) \(\dfrac{AE}{AB}=\dfrac{AO}{AC}\left(Talet\right).\left(1\right)\)
Xét tam giác ACD có: OF // CD (gt).
\(\Rightarrow\) \(\dfrac{AF}{AD}=\dfrac{AO}{AC}\left(Talet\right).\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\) \(\dfrac{AF}{AD}=\dfrac{AE}{AB}.\)
Xét tam giác ABD có: \(\dfrac{AF}{AD}=\dfrac{AE}{AB}\left(cmt\right).\)
\(\Rightarrow\) EF // BD (định lý Talet đảo).
Cho tứ giác ABCD, hai đường chéo AC và BD cắt nhau tại O. qua O vẽ đường thẳng song song với BC cắt AB ở E, đường thẳng song song với CD cắt AD ở F .
a/ Chứng minh : EF // BD
b/ Qua O vẽ đường thẳng song song với AB cắt BC tại G, đường thẳng song song với AD cắt CD tại H. Chưng minh : CG.DH = BG.CH.
Giúp mình bài này nhé. Cảm ơn các bạn
a.
Theo định lý Thales,ta có:
\(OE//BC\) nên \(\frac{AE}{EB}=\frac{AO}{OC}\left(1\right)\)
\(OF//CD\) nên \(\frac{AF}{FD}=\frac{AO}{OC}\left(2\right)\)
Từ (1);(2) suy ra \(\frac{AE}{EB}=\frac{AF}{FD}\Rightarrow FE//BD\) theo ĐL Thales đảo.
b.
Theo định lý Thales,ta có:
\(OG//AB\) nên \(\frac{AO}{OC}=\frac{BG}{GC}\left(3\right)\)
\(OH//AD\) nên \(\frac{AO}{OC}=\frac{DH}{HC}\left(4\right)\)
Từ (3);(4) suy ra:\(\frac{BG}{GC}=\frac{DH}{HC}\Rightarrow BG\cdot CH=CG\cdot DH\left(đpcm\right)\)
Cho tứ giác ABCD. Gọi I,J lần lượt là trung điểm của AC và BD. Đường thẳng qua I và song song với BD cắt đường thẳng AD tại E, đường thẳng qua J và song song với AC cắt đường thẳng BC tại F. Chứng minh rằng EF//AB
Mọi người giải giúp mình ạ, mình cảm ơn nhiều <333
Không bít giải xin lũi bn nha :(
Cho tứ giác ABCD nội tiếp đường tròn (O) sao cho điểm O nằm trong tứ giác ABCD và AB<CD. AC cắt BD tại E.
a) Chứng minh EA.EC=EB.ED
b) Gọi K trung điểm BC. Đường thẳng qua E và vuông góc OE cắt AD và BC lần lượt tại M,N. Chứng minh tứ giác ENKO nội tiếp
c) Chứng minh E trung điểm MN
d) Qua D kẻ đường vuông góc với AD. Đường thẳng này cắt đường thẳng vuông góc BC tại C ở F. Chứng minh E,O,F thẳng hàng
Cho hình bình hành ABCD(AB>AD).Qua A kẻ đường thẳng vuông góc với BD tại E,cắt CD tại I.Qua C kẻ đường thẳng vuông góc với BD tại F,cắt AB tại K
a) Tứ giác AKCI là hình gì ? Vì sao ?
b)Chứng minh AF//CE
c) Chứng minh rằng ba đương thẳng AC,EF và KI đồng qquy tại một điểm
vẽ cả hình hộ mk nếu đc
a: Xét tứ giác AKCI có
AK//CI
AI//CK
Do đó: AKCI là hình bình hành