Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
sdveb slexxx  acc 2 còn...
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 6 2023 lúc 8:43

2:

a: =>a^2+2ab+b^2-2a^2-2b^2<=0

=>-(a^2-2ab+b^2)<=0

=>(a-b)^2>=0(luôn đúng)

b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0

=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

Cíu iem
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 13:32

\(N=a^3+b^3+3ab\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)

=1

Nguyễn Hoàng Minh
26 tháng 9 2021 lúc 13:45

\(M=\left(a^2+b^2+2-a^2-b^2+2\right)\left[\left(a^2+b^2+2\right)^2+\left(a^2+b^2+2\right)\left(a^2+b^2-2\right)+\left(a^2+b^2-2\right)^2\right]-12\left(a^2+b^2\right)^2\\ M=4\left(a^4+b^4+4+4a^2+4b^2+2a^2b^2+\left(a^2+b^2\right)^2-4+a^4+b^4+4-4a^2-4b^2+2a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2-3a^4-6a^2b^2-3b^4\right)\\ M=4\cdot4=164\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 2 2018 lúc 5:10

Nguyễn Viễn
Xem chi tiết
Lê Tuấn Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 10 2018 lúc 16:45

Quang Trần Minh
Xem chi tiết
Nguyễn Linh Chi
27 tháng 3 2020 lúc 11:13

Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath

Khách vãng lai đã xóa
Phạm Nhật Quân
17 tháng 4 2020 lúc 8:51

tvbobnokb' n

iai

  ni;bv nn0

Khách vãng lai đã xóa
Trần Anh Văn
Xem chi tiết
Trần Anh Văn
22 tháng 12 2020 lúc 6:15

ai đó trả lời hộ tớ với

Hattori Heiji
Xem chi tiết
Pham Quoc Cuong
26 tháng 3 2018 lúc 21:33

Do a+b+c= 0

<=> a+b= -c 

=> (a+b)2= c2 

Tương tự: (c+a)2= b2, (c+b)2= a2   

Ta có: \(A=\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}\)

\(=\frac{1}{b^2+c^2-\left(b+c\right)^2}+\frac{1}{c^2+a^2-\left(c+a\right)^2}+\frac{1}{a^2+b^2-\left(a+b\right)^2}\)

\(=\frac{1}{-2bc}+\frac{1}{-2ca}+\frac{1}{-2ab}\)

\(=\frac{a+b+c}{-2abc}=0\)

Quinn
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 20:52

b: Ta có: \(N=a^3+b^3+3ab\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)

\(=1-3ab+3ab\)

=1