Cho phương trình ẩn x.
\(\frac{x+a}{x+2}+\frac{x-2}{x-a}=2\)
a, Giải phương trình với a=4
b, Tìm các giá trị của a sao cho phương trình nhận x=-1 làm nghiệm
cho phương trình ẩn x: \(\frac{x+a}{x+2}+\frac{x-2}{x-a}=2\)
a,Giải phương trình với a=4
b,Tìm các giá trị của a sao cho phương trình nhận x=-1 làm nghiệm
\(\text{a) Thay a = 4 vào pt ta có:}\)
\(\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)
\(\Leftrightarrow\frac{\left(x-4\right)\left(x+4\right)+\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-4\right)}=2\)
\(\Leftrightarrow\frac{x^2-16+x^2-4}{x^2-4x+2x-8}=2\)
\(\Leftrightarrow\frac{2x^2-20}{x^2-2x-8}=2\)
\(\Leftrightarrow2x^2-20=2.\left(x^2-2x-8\right)\)
\(\Leftrightarrow2x^2-20=2x^2-4x-16\)
\(\Leftrightarrow2x^2-2x^2+4x=-16+20\)
\(\Leftrightarrow4x=4\)
\(\Leftrightarrow x=1\)
\(\text{b) Thay x = -1 vào pt ta có:}\)
\(\frac{-1+a}{-1+2}+\frac{-1-2}{-1-a}=2\)
\(\Leftrightarrow\frac{a-1}{1}+\frac{-3}{-\left(a+1\right)}=2\)
\(\Leftrightarrow\left(a-1\right)+\frac{3}{a+1}=2\)
\(\Leftrightarrow\frac{\left(a-1\right)\left(a+1\right)+3}{a+1}=2\)
\(\Leftrightarrow\frac{a^2-1+3}{a+1}=2\)
\(\Leftrightarrow a^2+2=2.\left(a+1\right)\)
\(\Leftrightarrow a^2+2=2a+2\)
\(\Leftrightarrow a^2-2a=2-2\)
\(\Leftrightarrow a\left(a-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\a-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)
Vậy để pt có nghiệm là x = 1 thì a = {0 ; 2}
\(a.Thay:a=4\Leftrightarrow\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)
\(\Leftrightarrow\frac{\left(x+4\right)\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}=\frac{2\left(x+2\right)\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}\)
\(\Rightarrow\left(x+4\right)\left(x-4\right)+\left(x-2\right)\left(x+2\right)=2\left(x+2\right)\left(x-4\right)\)
\(\Leftrightarrow x^2-4x+4x-16+x^2+2x-2x-4=\left(2x+4\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-20=2x^2-8x+4x-16\)
\(\Leftrightarrow2x^2-20-2x^2+8x-4x+16=0\)
\(\Leftrightarrow4x-4=0\)
\(\Leftrightarrow x=1\)
Cho phương trình (ẩn x):x+a/a-x - x-a/a+x=a(3a+1)/a^2-x^2
Giải phương trình với a=-3Giải phương trình với a=1Giải phương trình với a=0Tìm các giá trị của a sao cho phương trình nhận x=1/2 làm nghiệm
1. a = 3 thì phương trình trở thành:
\(\frac{x+3}{3-x}-\frac{x-3}{3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2}-x^2\)
\(\Leftrightarrow\frac{\left(x+3\right)^2+\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}=\frac{-3\left[-9+1\right]}{9}-x^2\)
\(\Leftrightarrow\frac{x^2+6x+9+x^2-6x+9}{\left(3-x\right)\left(3+x\right)}=\frac{-3.\left(-8\right)}{9}-x^2\)
\(\Leftrightarrow\frac{2x^2+18}{9-x^2}=\frac{24}{9}-x^2\)
\(\Leftrightarrow\frac{2x^2+18}{9-x^2}+x^2=\frac{24}{9}\)
\(\Leftrightarrow\frac{2x^2+18+9x^2-x^4}{9-x^2}=\frac{24}{9}\)
\(\Leftrightarrow\frac{11x^2+18-x^4}{9-x^2}=\frac{24}{9}\)
\(\Leftrightarrow99x^2+18-9x^4=216-24x^2\)
\(\Leftrightarrow9x^4-123x^2+198=0\)
Đặt \(x^2=t\left(t\ge0\right)\)
Phương trình trở thành \(9t^2-123t+198=0\)
Ta có \(\Delta=123^2-4.9.198=8001,\sqrt{\Delta}=3\sqrt{889}\)
\(\Rightarrow\orbr{\begin{cases}t=\frac{123+3\sqrt{889}}{18}=\frac{41+\sqrt{889}}{6}\\t=\frac{123-3\sqrt{889}}{18}=\frac{41-\sqrt{889}}{6}\end{cases}}\)
Lúc đó \(\orbr{\begin{cases}x^2=\frac{41+\sqrt{889}}{6}\\x^2=\frac{41-\sqrt{889}}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{41+\sqrt{889}}{6}}\\x=\pm\sqrt{\frac{41-\sqrt{889}}{6}}\end{cases}}\)
Vậy pt có 4 nghiệm \(S=\left\{\pm\sqrt{\frac{41+\sqrt{889}}{6}};\pm\sqrt{\frac{41-\sqrt{889}}{6}}\right\}\)
Sửa)):
a = -3 mà ghi lôn a = 3.giải tương tự như 3
Cho phương trình ( ẩn x, a là tham số)
\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3a+1\right)}{a^2-x^2}\)
a) Giải phương trình với a=-3
b) Giải phương trình khi a=1
c) Tìm các giá trị của a để phương trình nhận x=\(\frac{1}{2}\) là nghiệm
a) ĐKXĐ : \(x\ne\pm a\).
Với \(a=-3\) khi đó ta có pt :
\(A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left(-9+1\right)}{\left(-3\right)^2-x^2}\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(-3-x\right)}{\left(-3-x\right)\left(-3+x\right)}+\frac{24}{\left(-3-x\right)\left(-3+x\right)}=0\)
\(\Rightarrow x^2-9-\left(-3x-x^2-9-3x\right)+24=0\)
\(\Leftrightarrow2x^2+6x+24=0\)
\(\Leftrightarrow x^2+3x+12=0\) ( vô nghiệm )
Phần b) tương tự.
\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3x+1\right)}{a^2-x^2}\)
\(=\frac{x+a}{a-x}+\frac{x-a}{a+x}=\frac{a\left(3+1\right)}{\left(a-x\right)\left(a+x\right)}\)
\(=\frac{\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+1\right)}=\frac{a\left(3a+1\right)}{\left(a+x\right)\left(a-x\right)}\)
\(\Leftrightarrow\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)=a\left(3a+1\right)\)
\(\Leftrightarrow x^2+2ax+a^2-ax-x^2-a^2+ax=3a^2+a\)
\(\Leftrightarrow2ax=3a^2+a\)
\(\Leftrightarrow x=\frac{3a^2+a}{2a}\left(a\ne0\right)\)
a) Khi x=-3 => \(x=\frac{3\cdot\left(-3\right)^2-3}{2\left(-3\right)}=-13\)
b) a=1
\(\Leftrightarrow x=\frac{3\cdot1^2+1}{2\cdot1}=2\)
tìm tham số a cho phương trình - 4x - 3 = 4x - 7 nhận x = 2 là nghiệm
Cho phương trình (ẩn x, a là tham số)
\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3a+1\right)}{a^2-x^2}\)
a) Giải phương trình với a=-3
b) Giải phương trình khi a=1
c) Tìm các giá trị của a để phương trình nhận \(x=\frac{1}{2}\)là nghiệm
a) \(ĐKXĐ:x\ne\pm3\)
Với a = -3
\(\Leftrightarrow A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2-x^2}\)
\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}=\frac{24}{9-x^2}\)
\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}+\frac{24}{x^2-9}=0\)
\(\Leftrightarrow\frac{-\left(x-3\right)^2-\left(x+3\right)^2+24}{x^2-9}=0\)
\(\Leftrightarrow-x^2+6x-9-x^2-6x-9+24=0\)
\(\Leftrightarrow-2x^2+6=0\)
\(\Leftrightarrow x^2=3\)
\(\Leftrightarrow x=\pm\sqrt{3}\)(tm)
Vậy với \(a=-3\Leftrightarrow x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)
b) \(ĐKXĐ:x\ne\pm1\)
Với a = 1
\(\Leftrightarrow A=\frac{x+1}{1-x}-\frac{x-1}{1+x}=\frac{3+1}{1-x^2}\)
\(\Leftrightarrow\frac{x+1}{1-x}-\frac{x-1}{1+x}+\frac{4}{x^2-1}=0\)
\(\Leftrightarrow\frac{-\left(x+1\right)^2-\left(x-1\right)^2+4}{x^2-1}=0\)
\(\Leftrightarrow-x^2-2x-1-x^2+2x-1+4=0\)
\(\Leftrightarrow-2x^2+2=0\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=\pm1\)(ktm)
Vậy với \(a=1\Leftrightarrow x\in\varnothing\)
c) \(ĐKXĐ:a\ne\pm\frac{1}{2}\)
Thay \(x=\frac{1}{2}\)vào phương trình, ta đươc :
\(A=\frac{\frac{1}{2}+a}{a-\frac{1}{2}}-\frac{\frac{1}{2}-a}{a+\frac{1}{2}}=\frac{a\left(3a+1\right)}{a^2-\frac{1}{4}}\)
\(\Leftrightarrow\frac{a+\frac{1}{2}}{a-\frac{1}{2}}+\frac{a-\frac{1}{2}}{a+\frac{1}{2}}-\frac{3a^2+a}{a^2-\frac{1}{4}}=0\)
\(\Leftrightarrow\frac{\left(a+\frac{1}{2}\right)^2+\left(a-\frac{1}{2}\right)^2-3a^2-a}{a^2-\frac{1}{4}}=0\)
\(\Leftrightarrow a^2+a+\frac{1}{4}+a^2-a+\frac{1}{4}-3a^2-a=0\)
\(\Leftrightarrow-a^2-a+\frac{1}{2}=0\)
\(\Leftrightarrow a^2+a-\frac{1}{2}=0\)
\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2-\frac{3}{4}=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{\sqrt{3}-1}{2}\\a=-\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{-\sqrt{3}-1}{2}\end{cases}}\)(TM)
Vậy với \(x=\frac{1}{2}\Leftrightarrow a\in\left\{\frac{\sqrt{3}-1}{2};\frac{-\sqrt{3}-1}{2}\right\}\)
Cho phương trình ẩn x (x+a)/(x+2)+(x-2)/(x-a)=2 a/ Giải phương trình với ẩn a=4 b/ Tìm các giá trị của a sao cho phương trình thừa nhận x=-1
cho phương trình (ẩn x) \(\dfrac{x+a}{a-x}\) - \(\dfrac{x-a}{a+x}\) = \(\dfrac{a\left(3a+1\right)}{a^2-x^2}\) tìm các giá trị của a sao cho phương trình nhận x=\(\dfrac{1}{2}\) làm nghiệm giúp mình với ạ
Đk:\(a\ne\pm x\)
Pt \(\Leftrightarrow\dfrac{\left(a+x\right)^2-\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+x\right)}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)
\(\Leftrightarrow\dfrac{2\left(a^2+x^2\right)}{a^2-x^2}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)
\(\Leftrightarrow2a^2+2x^2=3a^2+a\)
\(\Leftrightarrow a^2+a-2x^2=0\) (1)
Thay \(x=\dfrac{1}{2}\) vào (1) ta được:
\(a^2+a-2\left(\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow a^2+a-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{-1+\sqrt{3}}{2}\\a=\dfrac{-1-\sqrt{3}}{2}\end{matrix}\right.\) (tm)
Vậy...
Cho phương trình ( ẩn x): \(4x^2\)-25+\(k^2+4kx=0\)
a, giải phương trình với k=0
b, Giai phương trình với k=-3
c, tìm các giá trị của k để phương trình nhận x=-2 làm nghiệm
Cho biểu thức hai biến: f(x; y) = (2x – 3y + 7)(3x + 2y – 1)
a. Tìm các giá trị của y sao cho phương trình (ẩn x) f(x;y) = 0, nhận x = -3 làm nghiệm.
b. Tìm các giá trị của x sao cho phương trình (ẩn y) f(x;y) = 0; nhận y = 2 làm nghiệm.
Bài này có trong sbt toán 8 tập 2 mà!
a) f(x;y) = 0, nhận x = -3 làm nghiệm
<=> [2. (-3) - 3y + 7][3. (-3) + 2y -1] = 0
\(\Leftrightarrow\left[{}\begin{matrix}-6-3y+7=0\\-9+2y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-3y=0+6-7=-1\\2y=0+9+1=10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{3}\\y=5\end{matrix}\right.\)
Vậy:.........
b) f(x;y) = 0; nhận y = 2 làm nghiệm.
\(\Leftrightarrow\left(2x-3.2+7\right)\left(3x+2.2-1\right)=0\)
\(\Leftrightarrow\left(2x-6+7\right)\left(3x+4-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6+7=0\\3x+4-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0+6-7=-1\\3x=0-4+1=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-1\end{matrix}\right.\)
Vậy...........
Cho phương trình ẩn x có dạng: 9x2 - 25 - k2 - 2kx = 0
a) GIẢI phương trình với k = 0
b) Tìm các giá trị của k sao cho phương trình nhận x = -1 làm nghiệm.
k=0 => \(9x^2-25=0\)
\(\Leftrightarrow x^2=\frac{25}{9}\Leftrightarrow x=\pm\frac{5}{3}\)
x=-1 => 9-25-k2=2k=0
=> k2-2k+16=0
=> không có giá trị k thỏa mãn