Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoàng thị huyền trang
Xem chi tiết

Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+zx\)

Dấu "=" xảy ra khi: x = y =z

Ta có: \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+b^2c^4a^2+c^2a^4b^2\)

\(=a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ca\right)\)

Vậy \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ca\right)\) 

Dấu "=" xảy ra khi a = b = c

hoàng thị huyền trang
14 tháng 1 2018 lúc 9:54

bạn ơi vì sao \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\)

hoàng thị huyền trang
14 tháng 1 2018 lúc 10:38

hihi... mình biết rồi cảm ơn nha!!!

zZz Phan Cả Phát zZz
Xem chi tiết
alibaba nguyễn
4 tháng 2 2017 lúc 11:22

Ta có: 

\(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\)

\(\ge a^4b^2c^2+b^4c^2a^2+c^4a^2b^2=a^2b^2c^2\left(a^2+b^2+c^2\right)\)

\(\ge a^2b^2c^2\left(ab+bc+ca\right)\)

Cái bất đẳng thức áp dụng trong bài là:

\(x^2+y^2+z^2\ge xy+yz+zx\)

Lê Anh Tú
4 tháng 2 2017 lúc 11:01

  ĐẶt 2^a = x; 2^b=y; 2^c=z;=> x;y;z>0 

dpcm<=> x^3+y^3+z^3 ≥x+y+z và xyz = 2^a.2^b.2^c =2^(a+b+c)=1 

Ta có: x^3+y^3 = (x+y)(x²+y²-xy).Vì x²+y² ≥ 2xy => x^3+y^3 ≥xy(x+y) 

Tương tự ta có: y^3+z^3≥ yz(y+z) 

z^3+ x^3≥ xz(x+z) 

Cộng vế với vế ta có: 

2(x^3+y^3+z^3) ≥ x²y+ xy² + y²z+yz²+x²z+xz² 

Cộng 2 vế với x^3+y^3 +z^3 ta có: 

3(x^3+y^3+z^3) ≥ x²(x+y+z) + y²(x+y+z) + z²(x+y+z) = (x+y+z)(x²+y²+z²) (*) 

Theo cô si ta có: 

x²+y²+z² ≥3.(x².y².z²)^1/3 = 3 (vì xyz=1) 

=> 3(x^3+y^3+z^3) ≥ 3(x+y+z) 

=> x^3+y^3+z^3 ≥ x+y+z 

=> dpcm 

Trần Hoàng Việt
5 tháng 11 2017 lúc 9:54

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình

GV
Xem chi tiết
Nguyễn thành Đạt
18 tháng 2 2023 lúc 20:46

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a+b\right)^2-2\left(a^2+b^2\right)\le0\)

\(\Leftrightarrow a^2+2ab+b^2-2a^2-2b^2\le0\)

\(\Leftrightarrow-a^2+2ab-b^2\le0\)

\(\Leftrightarrow-\left(a-b\right)^2\le0\) ( dấu "=" xảy ra ⇔ a=b )

Mashiro Rima
Xem chi tiết
Thanh Tu Nguyen
Xem chi tiết
Nguyễn Ngọc Anh Minh
9 tháng 11 2023 lúc 8:16

 

1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)

\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)

2/

Ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)

\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)

\(\Rightarrow P_{min}=18\)

Không Tên
Xem chi tiết
Cô Hoàng Huyền
5 tháng 2 2018 lúc 11:35

Ta có : \(VT=\frac{\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2}{9}\)

\(=\frac{4a^2+4b^2+8ab+c^2-4ac-4ab+4b^2+4c^2+8bc+a^2-4ba-4bc+4c^2+4a^2+8ac+b^2-4bc-4ab}{9}\)\(=\frac{9\left(a^2+b^2+c^2\right)}{9}=a^2+b^2+c^2=VP\)

Vậy ta có đẳng thức: 

\(\left(\frac{2a+2b-c}{3}\right)^2+\left(\frac{2b+2c-a}{3}\right)^2+\left(\frac{2c+2a-b}{3}\right)^2=a^2+b^2+c^2\)

Tùng Nguyễn
Xem chi tiết
Nguyễn Hồng Pha
Xem chi tiết
Akai Haruma
23 tháng 3 2017 lúc 2:35

Lời giải:

BĐT tương đương với \((a^2+ab+ac)(a^2+ac+ab+bc)+b^2c^2\geq 0\)

Đặt \(a^2+ab+ac=t\)

BĐT cần chứng minh \(\Leftrightarrow t(t+bc)+b^2c^2=(t-\frac{bc}{2})^2+\frac{3b^2c^2}{4}\geq 0\)

Luôn đúng vì bình phương của một số thực luôn là số không âm

Dấu bằng xảy ra khi \(2(a^2+ab+ac)=bc\)\(bc=0\)

Shine Anna
Xem chi tiết
Quang Duy
29 tháng 7 2017 lúc 8:56

b) Ta có :

\(VT=\left(4x-3y+2\right)-\left(3x-4y+2\right)\)

\(=4x-3y+2-3x+4y-2\)

\(=\left(4x-3x\right)-\left(3y-4y\right)+\left(2-2\right)\)

\(=x+y\)

\(VP=\left(2x+2y\right)-\left(x+y\right)=2x+2y-x-y\)

\(=\left(2x-x\right)+\left(2y-y\right)\)

\(=x+y\)

\(\Rightarrow VT=VP\)

\(\Rightarrow\)đpcm