Ai làm nhanh nhất và chính xác mik sẽ tick cho. Help me, please.
Cho M=1+3+32+...+399+3100. Tìm số dư khi M chia 13;40
Cho M =1+3+32+33+...+399+3100 Tìm số dư khi chia cho 13, và chia M cho 40.
Cho M = 1+ 3+32 + 33 + 34 + …+ 399 + 3100 . Tìm số dư khi chia M cho 13, chia M cho 40
Bạn ko biết gõ số mũ à gõ thế này bố ai mà hiểu được
Tìm số nguyên x,y biết: Cho M = 1+ 3+32 + 33 + 34 + …+ 399 + 3100 . Tìm số dư khi chia M cho 13, chia M cho 40 .
Câu 17: (1 đ)
a) Tìm số nguyên x,y biết:
b) Cho M = 1+ 3+32 + 33 + 34 + …+ 399 + 3100 . Tìm số dư khi chia M cho 13, chia M cho 40 .
Cho M = 1+ 3+32 + 33 + 34 + …+ 399+ 3100. Tìm số dư khi chia M cho 13, chia M cho 40
\(M=1+3+3^2+............+3^{100}\)
\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+.......+\left(3^{98}+3^{99}+3^{100}\right)\)
\(\Leftrightarrow M=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+......+3^{98}\left(1+3+3^2\right)\)
\(\Leftrightarrow M=4+3^2.13+3^5.13+.........+3^{98}.13\)
\(\Leftrightarrow M=4+13\left(3^2+3^5+..........+3^{98}\right)\)
Mà \(13\left(3^2+3^5+......+3^{98}\right)⋮13\)
\(4:13\left(dư4\right)\)
\(\Leftrightarrow M:13\left(dư4\right)\)
b, tương tự
Ai làm đúng và nhanh nhất mik sẽ tick cho:
Tìm số tự nhiên n có 3 chữ số, biết rằng số đó chia cho 20; 25; 30 đều dư 15 nhưng khi chia 41 thì ko dư
n-15 chia hết cho 20,25,30 nên n là bội của 20,25,30
BCNN(20,25,30)=.... tự tìm
Xong có \(100\le n\le999\) thì chặn đc n-15 thuộc những giá trị nào, rồi tìm n và thử lại xem chia hết cho 41 ko
A chưa tính thử nhưng chắc có ít giá trị thôi e thử lm theo cách này nhé
Gọi số tự nhiên cần tìm là a ( a∈N; a < 1000)
Vì a chia cho 20, 25, 30 đều dư 15 nên a - 15 ⋮ 20, 25, 30 → a - 15 ∈BC(20,25,30)
Ta có : BCNN(20, 25, 30) = 22.52.3=300
→ a - 15 = {300, 600, 900, 1200 , ...}
→ a = {315, 615, 915, 1215, ... }
Mà theo đề bài thì a < 1000 và a ⋮ 41 nên a = 615
Vậy số tự nhiên cần tìm là 615.
Chúc bạn học tốt !
Gọi số cần tìm là a (a thuộc N*;a có 3 chữ số)
Ta có: a chia hết cho 41
a chia cho 20 dư 15
a chia cho 25 dư 15
a chia cho 30 dư 15
=>a-15 chia hết cho 20;25;30
=>a-15 thuộc BC(20,25,30)
Ta có: 20=22.5
25=52
30=2.3.5
=>BCNN(20,25,30)=22.3.52=300
=>BC(20,25,30)=B(300)={0;300;600;900;1200;...}
Mà a-15 thuộc BC(20,25,30)
=>a-15 thuộc {0;300;600;900;1200;...}
=>a thuộc {15;315;615;915;1215;...}
Mà a thuộc N*;a có 3 chữ số;a chia hết cho 41
=>a=615
Vậy số cần tìm là 615
a) Tìm số nguyên x,y, biết ( x-3).(y+1)=15
b)Cho m bằng 1+3+32+34+....+ 399+3100
Tìm số dư khi chia cho 13, chia m cho 40
a: (x-3)(y+1)=15
=>\(\left(x-3\right)\left(y+1\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>(x-3;y+1)\(\in\){(1;15);(15;1);(-1;-15);(-15;-1);(3;5);(5;3);(-3;-5);(-5;-3)}
=>(x,y)\(\in\){(4;14);(18;0);(2;-16);(-12;-2);(6;4);(8;2);(0;-6);(-2;-4)}
b: Sửa đề:\(m=1+3+3^2+3^3+...+3^{99}+3^{100}\)
\(m=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=4+13\left(3^2+3^5+...+3^{98}\right)\)
=>m chia 13 dư 4
\(m=1+3+3^2+...+3^{99}+3^{100}\)
\(=1+\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=1+3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)
\(=1+40\left(3+3^5+...+3^{97}\right)\)
=>m chia 40 dư 1
Solution
We have: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100)
3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101
Inferred: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100)
2A = 3101−13101−1
⇒⇒ A = 3101−123101−12
So A = 3101−12
Please help me
Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12
Mà đoạn 2A sai nhé bạn, sửa lại:
2A = 3101−13101−1 2A=-10001
A=-10001/2
A=-5000,5
Vậy A=-5000,5
1)Tìm số tự nhiên n < 500 mà n chia cho 15 dư 8 còn khi chia cho 35 dư 13
2)Tìm số tự nhiên n biết n chia cho 8 dư 7 còn khi chia cho 35 thì dư 13
3)Một trường tổ chức cho 64 học sinh đi thăm quan bằng các xe loại 12 chỗ và loại 7 chỗ. Biết số học sinh ngồi vừa đủ số ghế. Hỏi mỗi xe có mấy loại
(3 bài này các bạn giải theo dạng áp dụng ƯCLN và BCNN và giải đầy đủ giùm mình nhé!! Ai nhanh nhất và chính xác nhất thì mình sẽ tick cho.Thanks !!)