Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vubaolong
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 2 2021 lúc 21:02

a) ĐKXĐ: \(x\ne-2\)

b) Ta có: \(\dfrac{2x^2-4x+8}{x^3+8}\)

\(=\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)

\(=\dfrac{2}{x+2}\)

c) Vì x=2 thỏa mãn ĐKXĐ

nên Thay x=2 vào biểu thức \(\dfrac{2}{x+2}\), ta được:

\(\dfrac{2}{2+2}=\dfrac{2}{4}=\dfrac{1}{2}\)

Vậy: Khi x=2 thì giá trị của biểu thức là \(\dfrac{1}{2}\)

d) Để \(\dfrac{2}{x+2}=2\) thì x+2=1

hay x=-1(nhận)

Vậy: Để \(\dfrac{2}{x+2}=2\) thì x=-1

Nguyễn Thịnh
Xem chi tiết
Hà Anh Trần
9 tháng 5 2016 lúc 22:06

a) \(\frac{2x^2-4x+8}{x^3+8}\Rightarrow\) ĐKXĐ: \(x^3+8\ne0 \Leftrightarrow x^3\ne-8 \Leftrightarrow x\ne-2 \)

b) \(\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)

c) \(\frac{2}{x+2}\Rightarrow f\left(2\right)=\frac{2}{2+2}=\frac{1}{2}\) 

d) \(\frac{2}{x+2}=2\)
\(\Leftrightarrow x+2=1\)
\(\Leftrightarrow x=-1\)

 

Tiên Tiên
Xem chi tiết
Phạm Thị Thắm Phạm
Xem chi tiết
Trần Thị Ngọc Ánh
13 tháng 4 2019 lúc 18:25

bài1   A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)

b)  thế \(x=-\frac{1}{2}\)vào biểu thức A

 \(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)

c)  A=\(-\frac{1}{3x}< 0\)

VÌ (-1) <0  nên  3x>0

                        x >0

Nguyễn Thị Trà My
Xem chi tiết
Nguyễn Như Ý
25 tháng 5 2016 lúc 14:29

a) Ta thấy :x\(^3\)+8=x^3+2^3=(x+2).(x^2-2x+4)

ĐKXD là : (x+2).(x^2-2x+4) # 0 (# là khác )

Ta có :x^2-2x+4=(x^2-2x+1)+3=(x-1)^2+3>3 với mọi x\(\in\) R

Vậy ĐKXD là :x+2\(\ne\)0 => x\(\ne\)-2

b)\(\frac{2x^2-4x+8}{x^3+8}\)=\(\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2+4\right)}\)=\(\frac{2}{x+2}\)

c) x=2 (t/m điều kiện ) thay x=2 vào biếu thức trên ta đc :

\(\frac{2}{x+2}\)=\(\frac{2}{4}\)=\(\frac{1}{2}\)

Vậy khi x=2 thì gtrij của biếu thức =\(\frac{1}{2}\)

d) Để phân thức =2 thì \(\frac{2}{x+2}\)=2 <=> \(\frac{2}{x+2}\)=\(\frac{2\left(x+2\right)}{x+2}\)

                                                <=> 2=2x+4

                                                <=> -2=2x <=> x=-1 (t/m điều kiện )

Vậy để phân thức =2 thì x=-1

Minh Hiền Trần
25 tháng 5 2016 lúc 14:30

a. ĐKXĐ: \(x^3+8\ne0\Leftrightarrow\left(x+2\right)\left(x^2-2x+4\right)\ne0\Leftrightarrow x+2\ne0\Leftrightarrow x\ne-2\)

b. \(\frac{2x^2-4x+8}{x^3+8}=\frac{2.\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)

c. Tại x = 2, phân thức có giá trị:

\(\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)

d. Để p.thức có giá trị bằng 2 thì:

\(\frac{2}{x+2}=2\Leftrightarrow x+2=1\Leftrightarrow x=-1\)

Vậy để p thức có giá trị bằng 2 thì x = -1.

Lê Trần Thanh Ngân
Xem chi tiết
Giang Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 12 2021 lúc 18:25

a: ĐKXĐ: \(x\notin\left\{6;-6\right\}\)

b: \(B=\dfrac{x}{x+6}\)

Ngọc tấn đoàn
Xem chi tiết
ILoveMath
25 tháng 12 2021 lúc 21:31

a, ĐKXĐ:\(x^3+8\ne0\Rightarrow x^3\ne-8\Rightarrow x\ne-2\)

b,\(D=\dfrac{2x^2-4x+8}{x^3+8}=\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\dfrac{2}{x+2}\)

c, \(\dfrac{2}{x+2}=\dfrac{2}{2+2}=\dfrac{2}{4}=\dfrac{1}{2}\)

d, \(\dfrac{2}{x+2}>2\\ \Rightarrow2>2x+4\\ \Rightarrow2x+2< 0\\ \Rightarrow2x< -2\\ \Rightarrow x< -1\)

Hứa Suất Trí
Xem chi tiết
Nguyễn Hữu Triết
21 tháng 12 2018 lúc 14:09

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

❤  Hoa ❤
21 tháng 12 2018 lúc 19:02

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

❤  Hoa ❤
21 tháng 12 2018 lúc 19:21

chết mk nhìn nhầm phần c bài 2 :

\(2,\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)

Để P xác định 

\(\Rightarrow2-x\ne0\Rightarrow x\ne2\)

\(2+x\ne0\Rightarrow x\ne-2\)

\(x^2-4\ne0\Rightarrow x\ne0\)

\(x^2-3x\ne0\Rightarrow x\ne3\)

b, \(P=\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2+x\right)\left(2-x\right)}+\frac{2-x}{2+x}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(P=\left[\frac{4+4x+x^2}{\left(2-x\right)\left(2+x\right)}-\frac{4x^2}{\left(2+x\right)\left(2-x\right)}-\frac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}\right].\frac{x\left(2-x\right)}{x-3}\)

\(P=\left[\frac{8x-4x^2}{\left(2-x\right)\left(2+x\right)}\right].\frac{x\left(2-x\right)}{x-3}=\frac{4x\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)

\(P=\frac{4x^2\left(2-x\right)}{\left(x-3\right)\left(2+x\right)}\)

d, ĐỂ \(p=\frac{8x^2-4x^3}{x^2-x-6}< 0\)

\(TH1:8x^2-4x^3< 0\)

\(\Rightarrow8x^2< 4x^3\)

\(\Rightarrow2< x\Rightarrow x>2\)

\(TH2:x^2-x-6< 0\Rightarrow x^2< x+6\)