Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tấn Đạt Phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2021 lúc 22:55

ABCD là hình bình hành

Quang Minh Tống
Xem chi tiết
-Nhân -
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 1 2023 lúc 19:08

1B 2B

nguyễn đức anh
21 tháng 1 2023 lúc 22:16

1B,2B nha bạn yeu

Nhi Nhí Nhảnh
Xem chi tiết
Tuấn Nguyễn
15 tháng 6 2019 lúc 20:58

Sử dụng công thức (1): Với a, b, c là 3 cạnh đối diện của \(\widehat{A}\)\(\widehat{B}\)\(\widehat{C}\) của tam giác ABC thì \(S_{ABC}=\frac{1}{2}AB\)\(AC\sin A\)

Chứng minh: Kẻ \(BH\perp AC\Rightarrow S_{ABC}=\frac{BH.AC}{2}\)

Xét tam giác ABH vuông thì sin \(A=\frac{BH}{AB}\Rightarrow BH=\sin A.AC\)

Từ hai điều trên suy ra: \(S_{ABC}=\frac{AB.AC.\sin A}{2}\left(đpcm\right)\)

Trở lại bài toán:

Sử dụng công thức \(\sin\alpha=\sin\left(180-\alpha\right)\Rightarrow\sin AOD=\sin AOB=\sin BOC=\sin DOC\)

Áp dụng công thức (1):

\(S_{ABCD}=S_{AOB}=S_{AOD}=S_{DOC}=S_{BOC}=\frac{AO.OB.\sin AOB+AO.DO.\sin AOD+DO.CO.\sin DOC+BO.CO.\sin BOC}{2}\)

\(=\frac{\sin AOB\left(AO.OB+AO.OD+DO.OC+BO.OC\right)}{2}=\frac{\sin AOB\left(AO.BD+OC.BD\right)}{2}=\frac{\sin50^o.BD.AC}{2}\)

\(=\frac{20\sin50}{2}=10\sin50\)

Nguyễn Huỳnh Đổng Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2023 lúc 20:20

Xét ΔOAD và ΔOCB có

\(\widehat{OAD}=\widehat{OCB}\)

OA=OC

\(\widehat{AOD}=\widehat{COB}\)

Do đó: ΔOAD=ΔOCB

=>AD=BC

\(\widehat{OAD}=\widehat{OCB}\)

mà hai góc này ở vị trí so le trong

nên AD//BC

Xét tứ giác ABCD có

AD//BC

AD=BC

Do đó: ABCD là hình bình hành

tep.
Xem chi tiết
Khánh Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 9 2022 lúc 22:42

Xét tứ giác ABCD có

O là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AB//CD; AD//BC

Hoàng Quang Minh
Xem chi tiết
Nguyễn Quỳnh Anh
Xem chi tiết
Yến Phạm
21 tháng 10 2021 lúc 15:25

1) Vì ABCD là hình bình hành

=> OA=OC, OB=OD

Ta có: OM=OA/2

           OP=OC/2

Mà OA=OC => OM=OP

Cm tương tự ta được OQ=ON

Tứ giác MNPQ có OM=OP. OQ=ON

=> MNPQ là hình bình hành

2) Tứ giác ANCQ có OA=OC (cmt), OQ=ON (cmt)

Suy ra tứ giác ANCQ là hình bình hành

Tứ giác BPDM có OB=OD (cmt), OM=OP (cmt)

Suy ra tứ giác BPDM là hình bình hành