Tim x biet: \(x^3-14x^2+25x+12=0\)
tim x biet
a) 9x^2+6x+1=0
b) 25x^2=4
c) 8-125x^3=0
d) (2x+1)-10(2x+1)(x+2)+25(x+2)^2=0
GIÚP MIK VS NHÉ
a) = (3x +1)2 =0
3x+1 =0
x = -1/3
b) = (5x)2 -22 =0
(5x+2)(5x-2) = 0
5x+2 =0
x = -2/5
5x -2 =0
x= 2/5
xem đi rui lam tip
a) 9x2 + 6x + 1 = 0 => (3x)2 + 2 x 3x + 1 = 0 => (3x + 1)2 = 0 => 3x + 1 = 0 => x = \(\frac{-1}{3}\)
b) 25x2 = 4 => x2 = 4 : 25 => x2 = 0,16 => x = 0,4 hoặc x = -0,4
c) 8 - 125x3 = 0 => 125x3 = 8 => x3 = 8 : 125 => x3 = \(\frac{8}{125}\)=> x = \(\frac{2}{5}\)
c) = 23 - (5x)3 =0
(2-5x)(4 +10x +25x2) =0
2-5x=0
x = 2/5
4 + 10x +25x2 = 0 (máy tính giải dc)
d) = (( 2x+1) - 5(x+2))2 =0
2x+1 -5x -10=0
3x= -9
x = -3
(hoàn toàn ad hđt đáng nhớ thui,bn à)
Tìm x biết:
a) (x+2)^2 - 9 = 0
b) 25x^2 - 10x + 1 = 0
c) x^2 + 14x + 49 = 0
d) (2x-1)^2 + (x+3)^2 - 5(x+7) (x-7) = 0
a)
\(\left(x+2\right)^2-9=0\)
\(\Rightarrow\left(x+2\right)^2=9=3^2\)
\(\Rightarrow x+2=\pm3\)
\(\Rightarrow x=-5;1\)
b)
\(25x^2-10x+1=0\)
\(\left(5x\right)^2-2\cdot5x+1^2=0\)
\(\Rightarrow\left(5x+1\right)^2=0\)
\(\Rightarrow5x+1=0\)
\(\Rightarrow5x=-1;x=\dfrac{-1}{5}\)
c)
\(x^2+14x+49=0\)
\(\Rightarrow x^2+2\cdot7x+7^2=0\)
\(\Rightarrow\left(x+7\right)^2=0;x+7=0\)
\(\Rightarrow x=-7\)
d)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(4x^2-4x+1+x^2+6x+9-5x^2+5\cdot49=0\)
\(\Rightarrow5x^2-5x^2-4x+6x+10+245=0\)
\(\Rightarrow2x+255=0\)
\(\Rightarrow2x=-255\)
\(\Rightarrow x=\dfrac{-255}{2}\)
1) - Phan tich cac da thuc sau thanh nhan tu :
a) 14x2y2 - 21xy2 + 28x2y d) 2 phan 7 x(3y -1 )-2 phan 7y (3y-1)
b) x3 -3x2 + 3x- 1 e) (x+y)2-4x2
c) 27x2+1phan 8 f) (x+y)3-(x-y)3
2) tim x biet
a) x2(x+1)+2x(x+1)=0 b) x(3x-2)-5(2-3x)=0
c) 4 phan 9 -25x2=0 d) x2-x+phan4=0
3) tinh nhanh cac gia tri bieu thuc sau :
a) 17.91,5+170.0,85 b) 20162-162
c) x(x-10-y(1-x)tai x=2001va y = 2999
2.a là x=0 , x=-1, x=-2
2.b là x=2/3 , x=-5
tim x; \(x^3-5x^2-14x=0\)
=>x(x^2-5x-14)=0
=>x(x-7)(x+2)=0
hay \(x\in\left\{0;7;-2\right\}\)
Giải phương trình sau:
1) \(2x^4-9x^3+14x^2-9x+2=0\)
2) \(6x^4+25x^3+12x^2-25x+6=0\)
3) \(\left(x+1\right)^4-\left(x^2+2\right)^2=0\)
4) \(2x^3-3x^2+3x+8=0\)
5) \(x^4+2x^3+x^2=0\)
giúp tôi với
1) 2x4 - 9x3 + 14x2 - 9x + 2 = 0
<=> (2x4 - 4x3) - (5x3 - 10x2) + (4x2 - 8x) - (x - 2) = 0
<=> 2x3(x - 2) - 5x2(x - 2) + 4x(x - 2) - (x - 2) = 0
<=> (2x3 - 5x2 + 4x - 1)(x - 2) = 0
<=> [(2x3 - 2x2) - (3x2 - 3x) + (x - 1)](x - 2) = 0
<=> [2x2(x - 1) - 3x(x - 1) + (x - 1)](x - 2) = 0
<=> (2x2 - 2x - x + 1)(x - 1)(x - 2) = 0
<=> (2x - 1)(x - 1)2(x - 2) = 0
<=> 2x - 1=0
hoặc x - 1 = 0
hoặc x - 2 = 0
<=> x = 1/2
hoặc x = 1
hoặc x = 2
Vậy S = {1/2; 1; 2}
1) \(2x^4-9x^3+14x^2-9x+2=0\)
\(\Leftrightarrow2x^4-2x^3-7x^3+7x^2+7x^2-7x-2x+2=0\)
\(\Leftrightarrow2x^3\left(x-1\right)-7x^2\left(x-1\right)+7x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^3-7x^2+7x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[2\left(x^3-1\right)-7x\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[2\left(x-1\right)\left(x^2+x+1\right)-7x\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2x^2+2x+2-7x\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2x^2-5x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2x^2-x-4x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[x\left(2x-1\right)-2\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2=0\)
hoặc \(2x-1=0\)
hoặc \(x-2=0\)
\(\Leftrightarrow\)\(x=1\)hoặc \(x=\frac{1}{2}\)hoặc \(x=2\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;\frac{1}{2};2\right\}\)
2) \(6x^4+25x^3+12x^2-25x+6=0\)
\(\Leftrightarrow6x^4-3x^3+28x^3-14x^2+26x^2-13x-12x+6=0\)
\(\Leftrightarrow3x^3\left(2x-1\right)+14x^2\left(2x-1\right)+13x\left(2x-1\right)-6\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x^3+14x^2+13x-6\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x^3-x^2+15^2-5x+18x-6\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left[x^2\left(3x-1\right)+5x\left(3x-1\right)+6\left(3x-1\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-1\right)\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-1\right)\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\)\(2x-1=0\)
hoặc \(3x-1=0\)
hoặc \(x+2=0\)
hoặc \(x+3=0\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\)hoặc \(x=\frac{1}{3}\)hoặc \(x=-2\)hoặc \(x=-3\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{2};\frac{1}{3};-2;-3\right\}\)
3) Ktra lại đề nhé :D
4) \(x^3-3x^2+3x+8=0\)
\(\Leftrightarrow2x^3+2x^2-5x^2-5x+8x+8=0\)
\(\Leftrightarrow2x^2\left(x+1\right)-5x\left(x+1\right)+8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2-5x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2-5x+8=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(TM\right)\\2\left(x-\frac{5}{4}\right)^2+\frac{39}{8}=0\left(L\right)\end{cases}}\)
Vậy x = -1
5) \(x^4+2x^3+x^2=0\)
\(\Leftrightarrow x^2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x^2\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;-1\right\}\)
bai 1:tim x
a)x+x2-x3-x4=0
b)2x3+3x2+2x+3=0
c)x4-2x3+10x2-20x=0
bai 2:tim cap so (x,y) biet
xy+3x-4y=12
bai 3:voi gia tri nao cua x
a)x3-x2+3x-3>0
b)x3+x3+9x+9<0
c)4x3-14x2+6x-21<0
d)x2(2x2+3)+2x2+3>0
bai 4:CMR hieu binh phuong 2 so le lien tiep thi chia het cho 8
bai 1: Tim x biet
\(\hept{\begin{cases}x-y=\frac{3}{10}\\y\left(x-y\right)=-\frac{3}{50}\end{cases}}\)
bai 2: Tim x, y biet:
x+\(\left(-\frac{31}{12}\right)^2\)=\(\left(\frac{49}{12}\right)^2\)-x=y2
Bai 9: Tim x,y,z biet:
(x-1)2+(x+y)2+(xy-z)2=0
a) thay \(x-y=\frac{3}{10}\)vào \(y\left(x-y\right)=\frac{-3}{50}\)ta có\(\frac{3}{10}y=\frac{-3}{50}\)=>\(y=\frac{-3}{50}:\frac{3}{10}=\frac{-1}{5}\)=>\(x-y=\frac{3}{10}\Rightarrow x=\frac{3}{10}+\frac{-1}{5}=\frac{1}{10}\)
hôm sau mik giải tip cho
tim x thuoc Z biet:
a, x (x-7)=0
b, x (x+11)=0
c, (x+8) (x-12)
d, (x-3) (x2 + 3)=0
tim x biet:
x+x2-x3-x4=0
2x3+3x2+2x2+3=0
x2-x-12=0
a)x+x2-x3-x4=0
<=>x(x+1)-x3(x+1)=0
<=>x(x+1)(1-x2)=0
<=>x(x+1)(x+1)(x-1)=0
<=>x(x+1)2(x-1)=0
<=>x=0
hoặc (x+1)2=0<=>x=-1
hoặc x-1=0<=>x=1
b)sửa đề 1 chút!!!
2x3+3x2+2x+3=0
<=>x2(2x+3)+(2x+3)=0
<=>(2x+3)(x2+1)=0
<=>2x+3=0(do x2+1>0 với mọi x)
<=>2x=-3
<=>x=-1,5
c)x2-x-12=0
<=>(x2-4x)+(3x-12)=0
<=>(x(x-4)+3(x-4)=0
<=>(x-4)(x+3)=0
<=>x-4=0<=>x=4
Hoặc x+3=0<=>x=-3
ngu có thế cũng ko biết