12/(1-9x22)=(1-3x)/(1+3x) - (1+3x)/(x+1)
Giải phương trình:
a) \(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
b) \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
Giải phương trình:
a) \(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
b) \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
a) ĐKXĐ: \(x\notin\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)
Ta có: \(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
\(\Leftrightarrow\dfrac{\left(1-3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}-\dfrac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}\)
Suy ra: \(9x^2-6x+1-9x^2-6x-1=12\)
\(\Leftrightarrow-12x=12\)
hay x=-1(thỏa ĐK)
Vậy: S={-1}
Giải phương trình:
a) \(\dfrac{x+5}{3x-6}-\dfrac{1}{2}=\dfrac{2x-3}{2x-4}\)
b) \(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
c) \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
a) Ta có: \(\dfrac{x+5}{3x-6}-\dfrac{1}{2}=\dfrac{2x-3}{2x-4}\)
\(\Leftrightarrow\dfrac{2\left(x+5\right)}{6\left(x-2\right)}-\dfrac{3\left(x-2\right)}{6\left(x-2\right)}=\dfrac{3\left(2x-3\right)}{6\left(x-2\right)}\)
Suy ra: \(2x+5-3x+6=6x-9\)
\(\Leftrightarrow-x+11-6x+9=0\)
\(\Leftrightarrow20-7x=0\)
\(\Leftrightarrow7x=20\)
hay \(x=\dfrac{20}{7}\)(thỏa ĐK)
Vậy: \(S=\left\{\dfrac{20}{7}\right\}\)
Giải phương trình
a) 2(9x^2 + 6x + 1) = (3x+1)(x-2)
b) 12/1-9x^2 = 1-3x/1+3x - 1+3x/1-3x
a) \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow\)\(2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left[2\left(3x+1\right)-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(6x+2-x+2\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(5x+4\right)=0\)
đến đây tự lm nha
b) \(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\) (1)
ĐKXĐ: \(x\ne\pm\frac{1}{3}\)
\(\left(1\right)\)\(\Leftrightarrow\)\(\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)
\(\Rightarrow\)\(\left(1-3x\right)^2-\left(1+3x\right)^2=12\)
\(\Leftrightarrow\)\(\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)=12\)
\(\Leftrightarrow\)\(-12x=12\)
\(\Leftrightarrow\)\(x=-1\) (t/m ĐKXĐ)
Vậy....
a) \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left[2\left(3x+1\right)-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(3x+1\right)\left(6x+2-x+2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-\frac{4}{5}\end{cases}}}\)
b) ĐKXĐ: \(x\ne\pm\frac{1}{3}\)
\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
\(\Leftrightarrow\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)
\(\Leftrightarrow\left(1-3x\right)^2-\left(1+3x\right)^2=12\)
\(\Leftrightarrow\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)=12\)
\(\Leftrightarrow-12x=12\)
\(\Leftrightarrow x=-1\) (thỏa mãn)
Vậy x = -1
Giải phương trình
a) 2(9x^2 + 6x + 1) = (3x+1)(x-2)
b) 12/1-9x^2 = 1-3x/1+3x - 1+3x/1-3x
a/2(9x2+6x+1)=(3x+1)(x-2)
⇔2(3x+1)2= (3x+1)(x-2)
⇔ 2(3x+1)2 :(3x+1)=x-2
⇔ 2(3x+1)=x-2
⇔6x+2-x+2=0
⇔5x+4=0
⇔5x=-4
⇔x=\(\frac{-4}{5}\)
b/\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
⇔\(\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)
⇔12=(1-3x)2-(1+3x)2
⇔-(1-3x-1-3x)(1-3x+1+3x)=--12
⇔-(-6x.2)=-12
⇔12x=-12
⇔x=-1
bạn thấy mình làm sai hay thiếu thì bạn nhớ nhắc mình nha.
a,4x-8/2x2+1=0 b,x2-x-6/x-3=0 c,x+5/3x-6-1/2=2x-3/2x-4 d,12/1-9x2=1-3x/1+3x-1+3x/1-3x
giúp mình với ;-;
ghi này chả hiểu j bn ak
ghi rõ ra coi
Giải phương trình:
a) 5 + 96/x2-16 = 2x-1/x+4 - 3x-1/4-x
b) 3x+2/3x-2 - 6/2+3x = 9x2/9x2-44
c) 1/x-1 + 1/x+1 = 2/x+2
d) x+1/x-2 - 5/x+2 = 12/x2-4 + 1
b: \(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)
=>-6x+16=0
=>-6x=-16
hay x=8/3(nhận)
c: \(\Leftrightarrow\dfrac{x+1+x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x+2}\)
\(\Leftrightarrow2x\left(x+2\right)=2\left(x^2-1\right)\)
\(\Leftrightarrow2x^2+4x-2x^2+2=0\)
=>4x+2=0
hay x=-1/2(nhận)
\(7+12\sqrt{x+1}=x+4\sqrt{x^2+3x+2}\)
\(\sqrt{x^2+x+2}=\dfrac{3x^2+3x+2}{3x+1}\)
a.
ĐKXĐ: \(x\ge-1\)
\(7+12\sqrt{x+1}=x+4\sqrt{x^2+3x+2}\)
\(\Leftrightarrow4\sqrt{\left(x+1\right)\left(x+2\right)}-12\sqrt{x+1}+x-7=0\)
\(\Leftrightarrow4\sqrt{x+1}\left(\sqrt{x+2}-3\right)+x-7=0\)
\(\Leftrightarrow4\sqrt{x+1}\left(\dfrac{x-7}{\sqrt{x+2}+3}\right)+x-7=0\)
\(\Leftrightarrow\left(x-7\right)\left(\dfrac{4\sqrt{x+1}}{\sqrt{x+2}+3}+1\right)=0\)
\(\Leftrightarrow x-7=0\) (do \(\dfrac{4\sqrt{x+1}}{\sqrt{x+2}+3}+1>0;\forall x\ge-1\))
\(\Rightarrow x=7\)
b.
ĐKXĐ: \(x\ne-\dfrac{1}{3}\)
\(\Rightarrow3x^2+3x+2=\left(3x+1\right)\sqrt{x^2+x+2}\)
\(\Leftrightarrow x^2+x+2-\left(3x+1\right)\sqrt{x^2+x+2}+2x^2+2x=0\)
Đặt \(\sqrt{x^2+x+2}=t\)
\(\Rightarrow t^2-\left(3x+1\right)t+2x^2+2x=0\)
\(\Delta=\left(3x+1\right)^2-4\left(2x^2+2x\right)=\left(x-1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{3x+1+x-1}{2}=2x\\t=\dfrac{3x+1-\left(x-1\right)}{2}=x+1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+x+2}=2x\left(x\ge0\right)\\\sqrt{x^2+x+2}=x+1\left(x\ge-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=4x^2\left(x\ge0\right)\\x^2+x+2=x^2+2x+1\left(x\ge-1\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{3}\\\end{matrix}\right.\)
Có bao nhiêu khẳng định đúng
2 - 3 x > 0 ∀ x ∈ ℝ 2 - 3 x ≥ 1 ∀ x ≥ 0 2 - 3 x > 2 - 3 ∀ x < 1 2 - 3 x < 4 ⇔ x > 2 2 - 3 x > 2 + 3 ⇔ x < - 1
A. 2
B. 3
C. 4
D. 5