chứng tỏ nếu a+b+c khác 0 và \(a^3+b^3+c^3\)= 3abc thì a=b=c
Ta có a3 + b3 + c3 = 3abc
<=> (a + b)3 - 3ab(a + b) + c3 = 3abc
<=> (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) = 0
<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab) = 0
<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
<=> \(\orbr{\begin{cases}a+b+c=0\left(\text{tmđk}\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)
Khi a2 + b2 + c2 - ab - ac - bc = 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(\text{loại}\right)\)
Vậy a + b + c = 0
Chứng minh rằng nếu a+b+c=0 thì a^3+b^3+c^3=3abc
Từ \(a+b+c=0\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(-c\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
Chứng minh rằng nếu a+b+c=0 thì a^3+b^3+c^3=3abc
ta co :a + b+c=0
=>(a+b+c)^3= 0
<=> a^3 + b^3 + c^3 + 3a^2b+3a^2c + 3b^2a+3b^2c + 3c^2a+3c^2b + 6abc =0
<=>(a^3+b^3+c^3) + (3a^2b+3a^2c+3abc ) +(3b^2a+3b^c +3abc) +(3c^2a+3c^b +3abc ) - 3abc=0
<=>(a^3+b^3+c^3) + 3a(ab+ac+bc) + 3b(ab+bc+ac) + 3c(ac+bc+ab) - 3abc=0
<=>(a^3+b^3+c^3) +3(ab+bc+ac)(a+b+c) -3abc=0
<=>(a^3+b^3+c^3) +3(ab+bc+ac).0 - 3abc =0
<=> a^3+b^3+c^3 -3abc=0
=>a^3+b^3+c^3 =3abc (dpcm)
Ta co
\(a^3+b^3+c^3-3abc\)
=\(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
=\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
=\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]\)
Ma a+b+c=3
=>\(a^3+b^3+c^3-3abc=0\)
=>\(a^3+b^3+c^3=3abc\)(\(ĐPCM\))
cho a+b+c khác 0 và a^3+b^3+c^3=3abc . chứng minh rằng a=b=c
thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có :
a^3+b^3+c^3-3abc=0
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
luôn đúng do a+b+c=0
Chứng minh rằng : nếu \(a^3+b^3+c^3=3abc\) và a,b,c > 0 thì a=b=c
\(a^3+b^3+c^3=3abc\)\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]=0\)\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\frac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2}=0\)
Vì a,b,c > 0 nên a+b+c > 0
Do đó : \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Rightarrow}a=b=c\)
1) có: a^3 + b^3 + c^3 - 3abc = 0
((a + b)3 + c^3( - 3ab(a + b) - 3abc = 0
<=>(a + b + c)((a + b)2 - (a + b).c + c2( - 3ab(a + b + c) = 0
<=>(a + b + c) (a2 + b2 + c2- ac - bc - ab( = 0
Từ đây cho nhận xét:
+ Nếu a + b + c = 0 có a3 + b3 + c3 = 3abc (I)
a + b + c = 0
+ Nếu a^3 + b^3 + c^3 = 3abc thì
a = b = c
Nếu a^3 +b^3+c^3=3abc thì a+b+c=0 và a=b=c=0
ta có:a^3+b^3+c^3=3abc
<=>(a+b)^3+c^3-3ab(a+b)-3abc=0
<=>(a+b+c)[(a+b)^2+(a+b)c+c^2]-3ab(a+b...
<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0
<=>1/2(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]...
do a,b,c doi mot khac nhau nen PT<=>a+b+c=0(DPCM)
Thực hiện phép tính (a+b)(a^2+b^2-c^2-ab-bc-ac) và chứng minh rằng nếu a^3+b^3+c^3=3abc thì a=b=c hoặc a+b+c +0
Cho a^2+b^2+c^2+3= 2(a+b+c). Chứng minh a=b=c=1
2. Chứng minh rằng nếu a+b+c=0 thì a^3+b^3+c^3=3abc
Cho 3 số a,b,c > 0 và a khác b, b khác c, c khác a. Hãy chứng minh a3+b3+c3>3abc